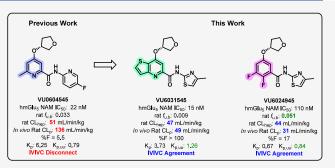
pubs.acs.org/acsmedchemlett

Letter

Discovery of Thieno[3,2-b]pyridine-5-carboxamide and 2,3-Difluorobenzamide Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5

Katherine E. Crocker,*[,] Scott H. Henderson, Rory A. Capstick, David L. Whomble, Aaron M. Bender, Andrew S. Felts, Changho Han, Julie L. Engers, Natasha B. Billard, Mallory A. Maurer, Hyekyung P. Cho, Alice L. Rodriguez, Colleen M. Niswender, Jordan O'Neill, Katherine J. Watson, Sichen Chang, Anna L. Blobaum, Olivier Boutaud, Weimin Peng, Jerri M. Rook, P. Jeffrey Conn, Craig W. Lindsley, and Kayla J. Temple*

Cite This: ACS Med. Chem. Lett. 2025, 16, 865-874


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: This Letter describes the discovery of novel $mGlu_s$ NAMs **VU6031545** and **VU6024945**. Starting from previously reported picolinamide compounds, a structure—activity relationship study of various core isosteres was conducted, leading to the identification of thieno[3,2-b]pyridine-5-carboxamide and 2,3-difluorobenzamide as competent core replacements. These compounds are highly potent as well as brain penetrant with an IVIVC agreement and improved oral bioavailability in rats.

KEYWORDS: Metabotropic Glutamate Receptor Subtype 5, mGlu_s, Negative Allosteric Modulator (NAM), Structure Activity Relationship (SAR), Isostere, Levodopa-Induced Dyskinesia, Pain

-Glutamate is the major excitatory neurotransmitter of the mammalian central nervous system (CNS) and modulates the activity of the metabotropic glutamate (mGlu) receptors. The eight mGlu receptor subtypes (mGlu₁₋₈) are divided into three groups (groups I, II, and III) based on structure/ sequence homology, downstream signaling partners, and pharmacology. Group I metabotropic glutamate receptors (i.e., mGlu1 and mGlu5) are broadly expressed in the mammalian nervous system and are primarily found postsynaptically where they play a key role in modulating synaptic plasticity. Predominately coupled via G_q, activation of mGlu₅ by glutamate regulates the function of phospholipase C, which, in turn, releases Ca²⁺ from intracellular stores.^{2,3} All eight mGlu receptors have a seven transmembrane (7TM) α -helical domain that connects to a large "Venus fly trap (VFT)" domain. While glutamate binds to the orthosteric site located within the VFT domain, allosteric sites have been identified within the transmembrane domain.⁴ Due to the highly conserved nature of the orthosteric binding site, successful design of selective orthosteric ligands has proven difficult. Therefore, research in the field has shifted focus toward allosteric modulation as an approach to improve selectivity when targeting specific mGlu subtypes. With over a decade of research, mGlu₅ NAMs are some of the most extensively

studied and advanced within the realm of mGlu allosteric modulation. S-7 As such, several mGlu₅ NAMs have been evaluated and demonstrated efficacy both preclinically and clinically, further establishing the utility of a selective mGlu₅ NAM in a multitude of potential therapeutic applications including levodopa-induced dyskinesia (LID) associated with Parkinson's disease, fragile X syndrome, autism spectrum disorder, gastroesophageal reflux disease (GERD), substance abuse disorder, anxiety, major depressive disorder, obsessive-compulsive disorder (OCD), Alzheimer's disease, migraine, and pain.

Early mGlu₅ NAM tool compounds MPEP (1) and MTEP (2) share a biaryl/heterobiaryl acetylene motif as the key pharmacophore which was retained throughout subsequent medicinal chemistry campaigns (Figure 1, analogues 3–6, highlighted in blue). It is well-documented that acetylenes are potentially reactive functional groups and can pose metabolic

 Received:
 March 5, 2025

 Revised:
 April 10, 2025

 Accepted:
 April 16, 2025

 Published:
 April 22, 2025

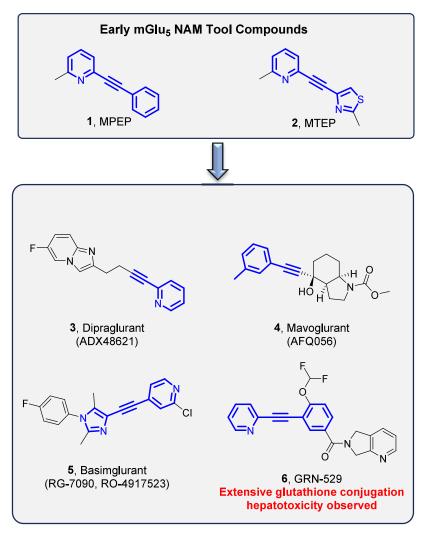
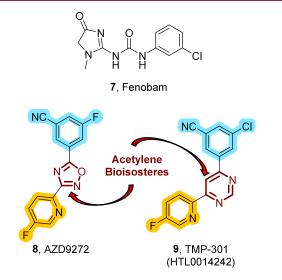
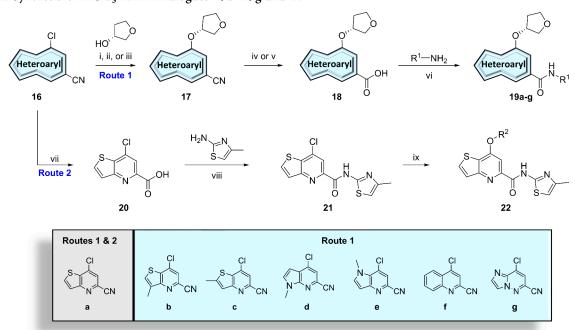


Figure 1. Selective mGlu₅ NAMs based on an aryl/heterobiaryl acetylene pharmacophore (highlighted in blue).

liabilities. For instance, the mGlu₅ NAM GRN-529 (6) demonstrated extensive glutathione conjugation to the alkyne which is believed to have resulted in biliary epithelial hyperplasia in nonhuman primates (NHPs) during an 8week regulatory toxicology study. 19 Attempts to develop nonacetylene based NAMs resulted in the discovery of fenobam (7) and AZD9272 (8) which were both advanced into clinical trials (Figure 2). Unfortunately, the development of psychosis-like symptoms led to the termination of these trials. It is important to note that further studies attributed these side effects to off-target engagement of monoamine oxidase-B (MAO-B)-mediated mechanisms and not mechanisms facilitated by the mGlu₅ receptor.²⁰ At present, TMP-301 (9) is the only nonacetylene-based mGlu₅ NAM undergoing clinical trials (Phase I) for substance abuse disorders.²¹ Interestingly, TMP-301 (9) and AZD9272 (8) are structurally very similar (highlighted in Figure 2); thus, TMP-301 may also suffer from off-target side effects (MAO-B). Currently, no mGlu₅ NAM has successfully progressed through clinical trials, highlighting the continued need for structurally diverse mGlu₅ NAMs.

A major focus of our group has been the development of small molecule mGlu₅ NAMs (Figure 3). Our work led to the identification of preclinical candidate **VU0424238** (10) (Figure 3).²² In a 28-day toxicology study, a NHP species-




Figure 2. Nonacetylene, selective mGlu₅ NAMs.

specific aldehyde oxidase (AO) metabolite accumulated after 14 days, resulting in pronounced anemia (nonmechanism based); therefore, further development of 10 was halted. Detailed metabolic studies has shown that in NHPs, the pyrimidine headgroup is oxidized by AO, whereas, in rats, this

Previous Work J. Med. Chem. 2017, 60, 5072. BMCL. 2019, 29, 47. This Work 10, VU0424238 (auglurant) hmGlu₅ NAM IC₅₀ = 22 nM ACS Bio. Med. Chem. Au. 2021, 1, 21. ACS Bio. Med. Chem. Au. 2021, 1, 21. 12, VU6005549 13, VU6044766 M₁ PAM 230 µM hmGlu₅ NAM IC₅₀ = 110 nM

Figure 3. Previously published scaffold-hopping exercises that led to the discovery of $mGlu_5$ NAMs 11 and 13. Further medicinal chemistry efforts led to novel and potent $mGlu_5$ NAMs 14 and 15.

Scheme 1. Synthesis of mGlu₅ NAM Analogues 19a-19g and 22^a

"Reagents and conditions: (i) KHMDS, DMF, 0 °C 1–18 h, 44%–92%; (ii) KHMDS, DMF, 0–60 °C, 48 h, 63%–91% (for **19d**); (iii) K_2CO_3 , DMF, microwave irradiation at 150 °C, 20 min, 61% (for **19g**); (iv) 2M NaOH_(aq) or 2M LiOH_(aq), 1,4-dioxane or THF, 60–100 °C, 2–8 h, 51%–100%; (v) 2M NaOH_(aq), 1,4-dioxane, microwave irradiation at 120 °C, 30 min, 99%; (vi) POCl₃, R^1NH_2 , pyridine, 23 °C, 30 min, 15%–95%; (vii) NaOH_(aq), 1,4-dioxane, 100 °C, 18 h, 99%; (viii) POCl₃, pyridine, 23 °C, 30 min, 74%; (ix) R^2OH , KO^4Bu , DMSO, 65 °C, 19%–97%.

oxidation process is carried out by xanthine oxidase (XO).²³ Thus, these observed AO/XO metabolism differences between species may be linked to the observed NHP-specific toxicity.

To eliminate AO/XO metabolism, we have published a follow-up series of compounds wherein the pyrimidine headgroup is replaced with a sp³-hybridized headgroup as in **VU0604545**, **11** (Figure 3, highlighted in yellow).²⁴ Although

potent when screened on human $mGlu_5$ (hm Glu_5 IC $_{50}$ = 22 nM), compound 11 suffered several setbacks including high predicted hepatic clearance in rat (CL $_{\rm hep}$ = 51 mL/min/kg), as well as poor oral bioavailability (%F = 5.5). When assessed *in vivo*, clearance was determined to be 136 mL/min/kg, indicating an *in vitro*-*in vivo* correlation (IVIVC) disconnect. Alternatively, we have reported on a series of 7-alkoxy-

thieno[3,2-b]pyridine-5-carboxamides derived from an unexpected mode shift of an M1 PAM scaffold 12 to generate mGlu₅ NAM 13 (Figure 3).²⁵ Compound 13 showed promising mGlu₅ potency (hmGlu₅ IC₅₀ = 110 nM), was centrally penetrant ($K_p = 0.94$) and fully displaced radioligand [3 H]methoxyPEPy ($K_{i} = 0.16 \mu M$). Having discovered thieno[3,2-b]pyridine (Figure 3, green) as a competent core replacement, we performed a scaffold-hopping exercise to incorporate novel cores into our previously established sp³hybridized headgroup series. This endeavor resulted in potent mGlu₅ NAMs with increased sp³ character that lack the metabolically labile pyrimidine found in compound 10 (Figure 3, analogues 14 and 15).

To begin, we first synthesized 7-(tetrahydrofuran-3-yl)thieno [3,2-b] pyridine-5-carboxamides with varying amide moieties (Figure 3, orange) as shown in Scheme 1 (Route 1). Reaction of nitrile 16a with (R)-tetrahydrofuran-3-ol and base afforded nitrile 17a, which was subsequently hydrolyzed to intermediate carboxylic acid 18a using sodium hydroxide. Conversion to the acid chloride using phosphorus oxychloride and in-situ trapping with various heterocyclic amines generated analogues 19a, which were screened against human mGlu₅ to determine potency, with the results highlighted in Table 1. Gratifyingly, the replacement of the picolinamide core with

Table 1. Structures and Activities for Analogs 19aA-aR^a

Cmpd.	\mathbb{R}^1	$\begin{array}{c} pIC_{50} \\ [\%Glu_{min}] \\ IC_{50} (nM) \end{array}$	Cmpd.	\mathbb{R}^1	$\begin{array}{c} pIC_{50} \\ [\%Glu_{min}] \\ IC_{50} (nM) \end{array}$
19aA	√ _S N _→	7.84 2 15	19aJ	√s, ×	inactive
19aB	$\langle V_{F}^{N} \rangle_{F}$	7.22 2 61	19aK	$\left\langle \begin{array}{c} N \\ S \end{array} \right\rangle$	5.75 3 1830
19aC	$\left\langle \begin{array}{c} N \\ \end{array} \right\rangle$ F	5.98 6 1070	19aL	$\langle N \rangle_F$	7.27 2 55
19aD	$\langle V_{N} \rangle$	7.66 2 22	19aM	$\left\langle \begin{array}{c} N \\ S \end{array} \right\rangle \left\langle \begin{array}{c} F \\ F \end{array} \right\rangle$	6.50 18 320
19aE		6.08 2 845	19aN	N CN	6.27 3 559
19aF	$\langle V_{N} \rangle$	<5 44 >10,000	19aO	√N_N-	5.97 3 1110
19aG	$\langle V_F \rangle$	<5 66 >10,000	19aP	⟨N _N	<5 50 >10,000
19aH	√N _S √	5.62 6 2557	19aQ	N S-N	<5 73 >10,000
19aI	√ _S N S√	inactive	19aR	HN	inactive

^aCalcium mobilization assays in human mGlu₅-HEK293A cells were performed in the presence of an EC80 fixed concentration of glutamate, n = 2 independent experiments in triplicate. The % Glu_{Min} is the measure of efficacy of the NAM to reduce an EC80 response of thieno [3,2-b] pyridine in the context of the (R)-tetrahydrofuranyl ether and 5-fluoropyridyl amide led to a compound with similar potency as 11 (19aB: $hmGlu_5$ IC₅₀ = 61 nM). Interestingly, moving the fluoro substituent from the 5position to the 6-position of the pyridine amide led to a >17-fold reduction in potency (19aC: hmGlu₅ IC₅₀ = 1.1 μ M); however, substitution with a methyl group at the 6-position resulted in a 3-fold improvement in potency (19aD: hmGlu₅ $IC_{50} = 22$ nM). Exchanging the pyridine ring of **19aD** with a phenyl ring gave a 40-fold loss in activity (19aE: hmGlu₅ IC₅₀ = 845 nM). Exchanging the pyridine ring with a pyrazine was even more detrimental to potency (19aF: hmGlu₅ IC₅₀ > 10 μ M). Replacement of the 5-methylpyridine with a 4methylthiazole, a common isostere, provided an analog with similar potency (19aA: $hmGlu_5 IC_{50} = 15 nM$). Steric bulk on the thiazole amide was not well-tolerated (19aH-19aJ), nor was the removal of the methyl substituent (19aK). Incorporation of fluorine(s) onto the 4-methylthiazole ring resulted in a slight drop in potency (19aL: hmGlu₅ IC₅₀ = 55 nM; **19aM**: hmGlu₅ IC₅₀ = 320 nM). Similarly, the addition of an electron-withdrawing group also led to a loss of activity (19aN: $hmGlu_5 IC_{50} = 559 nM$). Moreover, alternative 5membered heterocyclic amides were not tolerated (19aP-R). Taken together with our previous works, amide preference varied, depending upon the core scaffold employed with no obvious SAR trends identified.

Next, we shifted our attention to the optimization of the headgroup (Figure 3, yellow) in the context of the 4methylthiazole amide. To generate these analogues, as shown in Scheme 1 (Route 2), nitrile 16a was first hydrolyzed to the corresponding carboxylic acid 20. Following acid chloride formation with phosphorus oxychloride, in-situ coupling with 4-methylthiazol-2-amine gave rise to the key intermediate 21. Finally, chloride 21 underwent nucleophilic aromatic substitution with various alcohols to generate compounds 22, which were screened against human mGlus with results reported in Table 2. These results highlight the importance of the ether-containing headgroup. When compared to the picolinamide series 11, several similar SAR trends were noted. For instance, the (R)-tetrahydrofuranyl enantiomer (19aA: $hmGlu_5 IC_{50} = 15 nM$) is preferred to the (S)-enantiomer (22a: $hmGlu_5 IC_{50} = 543 nM$), with a 36-fold difference in potency. Additionally, steric bulk (22b) and ring expansion (22c and 22d) were not tolerated and detrimental to potency. Another similarity was observed when ring contraction to the oxetane resulted in a moderately potent compound (22e: hmGlu₅ IC₅₀ = 185 nM), a 12-fold loss in activity was observed when compared to 19aA. Likewise, both the cyclobutanecarbonitrile (22i) and thietane (22j) analogues also gave an \sim 7fold loss in potency. Like the picolinamide series, homologation to the methylene tetrahydrofuranyl analogue led to an 18-fold loss in potency (22f: $hmGlu_5 IC_{50} = 267 nM$). Also, conversion from furanyl (19aA) to cyclopentyl resulted in a drastic loss of potency (22h: hmGlu₅ IC₅₀ > 10 μ M), emphasizing the importance of the heteroatom in the ether headgroup.

We next investigated other core replacements of the picolinamide of 11 (Figure 3, blue) while holding constant the (R)-tetrahydrofuranyl ether and both the methylthiazoleamide and 5-fluoropyridyl amide tails. Synthesis of these analogues followed a similar strategy from easily accessible starting materials, as shown in Schemes 1 and 2. First, various nitriles 16b–16g underwent a series of reactions

Table 2. Structures and Activities for Analogues 22a-22ja

			22			
Cmpd.	\mathbb{R}^2	pIC ₅₀ [%Glu _{min}] IC ₅₀ (nM)		Cmpd.	R ²	pIC ₅₀ [%Glu _{min}] IC ₅₀ (nM)
22a	\checkmark	6.30 2 543		22f	\\Co	6.60 2 267
22b		inactive		22g	W"0	6.17 12 682
22c	1,	6.46 2 367		22h		<5 20 >10,000
22d		<5 25 >10,000		22i	CN	7.03 2 99
22e	\L'\	6.76 2 185		22j	\sum_s	6.98 2 107

[&]quot;Calcium mobilization assays in human mGlu₅-HEK293A cells were performed in the presence of an EC₈₀ fixed concentration of glutamate, n = 2 independent experiments in triplicate. The % Glu_{Min} is the measure of efficacy of the NAM to reduce an EC₈₀ response of glutamate.

as previously described for the thieno [3,2-b] pyridine core analogues to afford compounds 19b-19g (Scheme 1, Route 1). The remaining analogues were synthesized through various ester intermediates that could be easily obtained and subsequently hydrolyzed before performing an amide formation. In the case of the pyridazine core, an S_NAr reaction between 3,5-dichloropyridazine (23a) and (R)-tetrahydrofuran-3-ol gave the chloride intermediate 24a which was subsequently converted to ester intermediate 25a via palladium-catalyzed carbonylation in ethanol (Scheme 2, Route 1). For aryl/heteroaryl alcohols, such as ethyl 5hydroxynicotinate (28b) and ethyl 2,3-difluoro-5-hydroxybenzoate (28c), Mitsunobu reactions with (S)-tetrahydrofuran-3ol afforded the alkyl ether intermediates 25b and 25c (Scheme 2, Route 2). Finally, chlorides 30e-30g underwent an S_NAr reaction with (R)-tetrahydrofuran-3-ol to afford ester intermediates 25e-25g (Scheme 2, Route 4). With intermediates 25a-25c and 25e-25g in hand, ester hydrolysis under basic conditions provided carboxylic acid intermediates 26 in quantitative yield. Alternatively, direct nucleophilic aromatic substitution reaction between commercial carboxylic acid 29d with (R)-tetrahydrofuran-3-ol afforded carboxylic acid **26d** in quantitative yield (Scheme 2, Route 3). With the requisite acid intermediates in hand, reactions with phosphorus oxychloride and either 5-fluoropyridin-2-amine or 4-methylthiazol-2-amine in pyridine afforded compounds 27a-27g in low to modest yields. Compounds 19b-19g and 27a-27g were screened against human mGlu₅ to determine potency with the results highlighted in Table 3.

We quickly noticed varying the pyridine regiochemistry of the picolinamide core resulted in a complete loss of potency (27bA-B). Other 6-membered nitrogen-containing heterocycles including pyridazine (27aA-B), pyrazine (27dA-B), and pyrimidine (27eA-B) were similarly unsuccessful. These results demonstrate the importance of the nitrogen position within the pyridine ring of the picolinamide core. Notably, the 1,2-difluorobenzyl core was a competent picolinamide replacement in the context of the 4-methylthiazole amide (27cA: hmGlu₅ IC₅₀ = 110 nM); however, the 5-fluoropyridine amide was 14-fold less potent (27cB: hmGlu₅ IC₅₀ = 1.6 μ M). Throughout this exercise, this general trend was observed, indicating the importance of the amide tail substitution.

Postulating that the methyl substitution of the pyridine core of compounds 10 and 11 was important for maintaining potency, we returned our attention to bicyclic ring systems to mimic the methyl substitution with alternative 5,6- or 6,6-fused heteroaryl ring systems. While the quinoline core provided a modestly potent analogue in the context of the 4methylthiazole amide (19fA: hmGlu₅ IC₅₀ = 192 nM), the addition of a nitrogen atom to give a 1,7-naphthyridine core was detrimental to potency (27gA: hmGlu₅ IC₅₀ = 2.1 μ M). Similarly, addition of a second nitrogen to the thieno [3,2b]pyridine ring of **19a** to generate the thieno[3,2-d]pyrimidine also resulted in a loss of potency (27fA: hmGlu₅ IC₅₀ = 1.2 μ M) as did substitutions on the thieno[3,2-b]pyridine ring (19bA: hmGlu₅ IC₅₀ = 328 nM; 19cA: hmGlu₅ IC₅₀ = 357 nM). Other core replacements such as 1-methyl-1H-pyrrolo-[3,2-b] pyridine (19e) and imidazo [1,2-b] pyridazine (19g) proved to be ineffective. Conversely, the 1-methyl-1Hpyrrolo[2,3-b]pyridine core delivered a potent mGlu₅ NAM (19dA: $hmGlu_5 IC_{50} = 93 nM$).

To determine which compounds would be advanced into extensive *in vitro* and *in vivo* drug metabolism and pharmacokinetic (DMPK) characterization, we initially evaluated rat predicted hepatic clearance ($\mathrm{CL_{hep}}$) and human plasma fraction unbound ($f_{\mathrm{u,plasma}}$) of our most potent analogues (hmGlu₅ IC₅₀ \leq 110 nM) as a method to quickly triage compounds (results highlighted in Table 4). Many of the

Scheme 2. Synthesis of mGlu₅ NAM Analogues 27a-27g^a

"Reagents and conditions: (i) (*R*)-tetrahydrofuran-3-ol, NaH, NMP, 0−23 °C, 1 h, 36%; (ii) Pd(dppf)Cl₂•DCM, NaOAc, EtOH/DMF, CO_(g), 70 °C, 3 h, 90%; (iii) 2*M* NaOH_(aq) or 2*M* LiOH_(aq), THF, 1−2 h, 85%−99%; (iv) 2*M* LiOH_(aq), THF, 60 °C, 8 h, 85% (for **30f**); (v) POCl₃, R¹NH₂, pyridine, 23 °C, 30 min, 2%−47%; (vi) (*S*)-tetrahydrofuran-3-ol, DIAD, PPh₃, THF, 23 °C, 1 h, 62%−74%; (vii) (*R*)-tetrahydrofuran-3-ol, KHMDS, THF, microwave irradiated at 150 °C, 15 min, 99%; (viii) (*R*)-tetrahydrofuran-3-ol, KO¹Bu, DMF, 80 °C, 30 min, 99% (for **30e**); (ix) (*R*)-tetrahydrofuran-3-ol, KHMDS, DMF, 0 °C, 30 min, 58%−72% (for **30f−30g**).

analogues displayed high rat predicted CL_{hep} based on *in vitro* microsomal data (>47 mL/min/kg); however, analogues **19aA**, **19aL**, and **27cA** were predicted to have moderate rat CL_{hep} (44–47 mL/min/kg), compared to the predecessor compound **VU0604545** (11) (CL_{hep} = 51 mL/min/kg). Of these three compounds, **19aA** ($f_{u,plasma}$ = 0.020) and **27cA** ($f_{u,plasma}$ = 0.069) were determined to have the most attractive human plasma fraction unbound. Based on these data, **19aA** (**VU6031545**) and **27cA** (**VU6024945**) were selected to advance into a battery of *in vitro* and *in vivo* DMPK assays and our standard rat plasma:brain level (PBL) cassette studies (Table 5).

Regarding physicochemical properties, both compounds possessed molecular weights less than 365 Da with attractive x Log P values (<4) for CNS penetration. Although both compounds were predicted to have moderate clearance in rats, both were predicted to have high clearance in human ($\mathrm{CL_{hep}} > 15~\mathrm{mL/min/kg}$). While both compounds exhibited moderate plasma free faction in rat, VU6024945 demonstrated a more desirable fraction unbound in rat homogenates ($f_{\mathrm{u,brain}} = 0.051$) versus VU6031545 ($f_{\mathrm{u,brain}} = 0.009$). Although VU6024945 displayed sufficient CNS distribution of unbound drug (rat brain:plasma $K_{\mathrm{p}} = 0.67$; $K_{\mathrm{p,uu}} = 0.84$), VU6031545

proved to have higher CNS penetration (rat brain:plasma $K_{\rm p}$ = 3.73; $K_{\rm p,uu}$ = 1.29). When cytochrome P450 (CYP450) inhibition was evaluated, both analogues displayed a CYP1A2 IC₅₀ \leq 1.3 μ M with no appreciable inhibition observed for the other isoforms tested (CYP 2C9, 2D6, 3A4 IC₅₀ > 30 μ M).

Due to the previous IVIVC disconnect observed for the VU0604545 (11) series, we accessed both compounds in invivo IV/PO PK experiments. Gratifyingly, the predicted rat clearance of both VU6031545 ($CL_{hep} = 47.0 \text{ mL/min/kg}$) and VU6024945 (CL_{hep} = 43.7 mL/min/kg) were in good agreement with the in-vivo clearances (CL_p = 49.3 mL/min/ kg and $CL_p = 31.3$ mL/min/kg, respectively). VU6031545 displayed a high volume of distribution ($V_{ss} = 6.67 \text{ L/kg}$) with an elimination half-life of 3.42 h and an oral bioavailability >100%. VU6024945 demonstrated a moderate volume of distribution ($V_{ss} = 2.89 \text{ L/kg}$) with an elimination half-life of 1.78 h and a lower oral bioavailability (%F = 17). Both compounds represent an improvement over the previous series (11), which showed an IVIVC disconnect, a short elimination half-life ($t_{1/2}$ = 46 min), and poor oral bioavailability (%F = 5.5). Moreover, when compared to the structurally similar predecessor analogue VU0409106 (CYP1A2 IC₅₀ < 100 nM,

Table 3. Structures and Activities for Analogues 19b-19f and 27a-27g^a

		\mathbb{R}^1		
	_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	
		Α	В	
Cmpd.	Core Modification	pIC ₅₀ [%Glu _{min}] IC ₅₀ (nM)	$\begin{array}{c} \mathbf{pIC}_{50} \\ [\%\mathbf{Glu}_{\mathrm{min}}] \\ \mathbf{IC}_{50}(\mathbf{nM}) \end{array}$	
19b	S	6.24 2 628	inactive	
19c	-s-	6.45 2 357	inactive	
19d		7.04 2 93	5.98 12 1060	
19e		<5 10 >10,000	<5 46 >10,000	
19f		6.74 6 192	5.59 15 2650	
19g	NN N	>5 52 >10,000	inactive	
27a	N N	inactive	inactive	
27b		inactive	inactive	
27c	F	6.99 2 110	5.88 3 1570	
27d		inactive	inactive	
27e	N N N	inactive	inactive	
27f	SIN	5.95 5 1170	5.18 9 7200	
27g	N	5.69 2 2050	5.76 3 1780	

"Calcium mobilization assays in human mGlu₅-HEK293A cells were performed in the presence of an EC₈₀ fixed concentration of glutamate, n=2 independent experiments in triplicate. The % Glu_{Min} is the measure of efficacy of the NAM to reduce an EC₈₀ response of glutamate.

%F < 5%), an analogue of **11** bearing a fluorophenyl core and methyl thiazole amide tail, incorporation of a sp³-hybridized headgroup to provide **VU6024945** afforded improving druglike properties (CYP1A2 IC₅₀ = 1.3 μ M, %F = 17%).²²

Table 4. In Vitro Predicted Rat Hepatic Clearance ($\mathrm{CL_{hep}}$) and Human Plasma Fraction Unbound ($f_{\mathrm{u,plasma}}$) of the Most Potent mGlu₅ NAMs

compound	IC_{50} (nM)	$rat \ CL_{hep} \ (mL/min/kg)$	human $f_{\text{u,plasma}}$
19aA	15	47.0	0.020
19aB	61	55.1	0.008
19aD	22	57.5	0.005
19aL	55	41.8	0.016
19dA	93	52.3	0.006
22i	99	48.2	0.005
22j	107	68.4	0.001
27cA	110	43.7	0.069

Table 5. In Vitro and In Vivo DMPK Data for Analogues 19aA and 27cA

property	19aA, VU6031545	27cA, VU6024945			
MW	361.43	340.34			
$x \log P$	3.23	3.23			
TPSA	73.3	60.4			
In Vit	ro PK Parameters				
CL_{int} (mL/min/kg), rat	143	116			
CL_{hep} (mL/min/kg), rat	47.0	43.7			
CL _{int} (mL/min/kg), human	140	241			
CL _{hep} (mL/min/kg), human	18.3	19.3			
$\operatorname{rat} f_{u,\operatorname{plasma}}^{a}$	0.027	0.040			
human $f_{u,plasma}^{a}$	0.020	0.069			
Rat $f_{u,\text{brain}}^{a}$	0.009	0.051			
In Viv	o PK Parameters ^b				
CL_p (mL/min/kg)	49.3	31.3			
Elim. $t_{1/2}$ (h)	3.42	1.78			
MRT (h)	2.45	1.44			
$V_{\rm ss} ({\rm L/kg})$	6.67	2.89			
%F ^c	>100	16.6			
Brain Distribution (0.25 h) (SD Rat; 0.2 mg/kg IV)					
$K_{ m p\ brain:plasma}^{\ \ c}$	3.73	0.67			
K _{p,uu brain:plasma}	1.29	0.84			
$CYP_{450} IC_{50} (\mu M)$					
1A2	1.2	1.3			
2C9	>30	>30			
2D6	>30	>30			
3A4	>30	>30			

 af_u = fraction unbound; equilibrium dialysis assay; brain = rat brain homogenates. b Male Sprague—Dawley rats (n = 2); IV PK: 1 mg/kg, vehicle = 10% ethanol, 40% PEG400, 50% saline; PO PK: 10 mg/kg, vehicle = 10% Tween80 in water. $^cK_{\rm p}$ = total brain-to-plasma partition ratio. $^dK_{\rm p,uu}$ = unbound brain-to-plasma partition ratio [(brain f_u × total brain)/(plasma f_u × total plasma)].

In conclusion, novel mGlu₅ NAMs were identified utilizing a scaffold hopping approach. Our new generation of mGlu₅ NAMs lack the classical aryl/heterobiaryl acetylene chemotype which has been linked to poor PK and hepatotoxicity. Utilizing thieno [3,2-b] pyridine-5-carboxamide as a core replacement for 6-methylpicolinomide of **VU0604545** (11), we were able to identify several potent mGlu₅ NAMs (hmGlu₅ IC₅₀ < 80 nM). A follow-up exercise explored alternate cores and resulted in the discovery of additional highly potent mGlu₅ NAMs (hmGlu₅ IC₅₀ \leq 110 nM). Although many of these potent analogues displayed high predicted rat CL_{hep} and/or high plasma protein binding in human, two compounds (19aA and 27cA) displayed moderate predicted clearance and moderate plasma fraction unbound in human. Both compounds were

advanced into further DMPK profiling. VU6031545 (19aA) proved to be highly CNS penetrant ($K_p = 3.73$) with a high distribution of unbound drug ($K_{p,uu} = 1.29$) which further improved upon predecessor compound VU0604545 (11) (rat brain:plasma $K_{p,uu} = 0.79$). Additionally, both VU6031545 (19aA) and VU6024945 (27cA) showed improvement in elimination half-life and oral bioavailability when compared to predecessor VU0604545 (11). Unlike the previous series, these compounds showed good IVIVC. Unfortunately, both compounds were predicted to have high clearance in human $(CL_{hep} > 15 \text{ mL/min/kg})$ and inhibited CYP1A2 $(IC_{50} \le 1.3)$ μ M) and further progression was halted. While our current endeavor did not generate mGlus NAMs with suitable DMPK profiles to warrant further development, it did provide invaluable SAR insights for future scaffold designs. Further refinements are underway and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.5c00119.

General methods for the synthesis and characterization of key compounds and experimental details for calcium mobilization assays, *in vitro* and *in vivo* DMPK protocols (PDF)

AUTHOR INFORMATION

Corresponding Authors

Kayla J. Temple — Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; orcid.org/0000-0001-5290-574X; Phone: 615-343-2725; Email: kayla.temple@ vanderbilt.edu

Katherine E. Crocker — Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; Email: katherine.crocker@vanderbilt.edu

Authors

- Scott H. Henderson Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; orcid.org/0000-0002-9504-5943
- Rory A. Capstick Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- David L. Whomble Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Aaron M. Bender Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States

- Andrew S. Felts Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Changho Han − Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; orcid.org/0000-0002-0832-7070
- Julie L. Engers Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; orcid.org/0009-0004-3654-5464
- Natasha B. Billard Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Mallory A. Maurer Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Hyekyung P. Cho Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Alice L. Rodriguez Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; orcid.org/0000-0002-5244-5103
- Colleen M. Niswender Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt Kennedy Center and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Jordan O'Neill Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Katherine J. Watson Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Sichen Chang Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Anna L. Blobaum Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt

- University School of Medicine, Nashville, Tennessee 37232, United States
- Olivier Boutaud Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Weimin Peng Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Jerri M. Rook Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- P. Jeffrey Conn Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Craig W. Lindsley Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States; Department of Chemistry and Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States; Orcid.org/0000-0003-0168-1445

Complete contact information is available at: https://pubs.acs.org/10.1021/acsmedchemlett.5c00119

Author Contributions

Vauthors K. E. Crocker and S. H. Henderson contributed equally to this work. S.H.H., R.A.C., D.L.W., A.M.B, A.S.F., C.H., J.L.E., and K.E.C. performed synthetic chemistry and provided chemical characterization. N.B.B., M.A.M., H.P.C., A.L.R., and C.M.N. performed and analyzed molecular pharmacology. W.P. and J.M.R. performed *in vivo* PK experiments. S.C., J.O., K.J.W., A.L.B., and O.B. performed and analyzed DMPK experiments. P.J.C, C.M.N., J.M.R, A.S.F., and C.W.L. oversaw experimental design, and K.E.C. and K.J.T. wrote the manuscript with input from all authors.

Notes

The authors declare the following competing financial interest(s): The authors hold IP on mGlu5 NAMs.

ACKNOWLEDGMENTS

We thank the NIH for funding via the Molecular Libraries Probe Center Network (No. U54MH084659, to C.W.L.), Vanderbilt NCDDG grants (Nos. U01MH087965 and U19MH097056, to P.J.C.), and the HEAL Initiative (No. 1UG3NS116218-01, to J.M.R and C.W.L.). We also thank William K. Warren, Jr. and the William K. Warren Foundation who funded the William K. Warren, Jr. Chair in Medicine (to C.W.L.).

REFERENCES

- (1) Bikbaev, A.; Manahan-Vaughan, D. Metabotropic glutamate receptor, mGlu₅, regulates hippocampal synaptic plasticity and is required for tetanisation-triggered changes in theta and gamma oscillations. *Neuropharmacology.* **2017**, *115*, 20–29.
- (2) Golubeva, A. V.; Moloney, R. D.; O'Connor, R. M.; Dinan, T. G.; Cryan, J. F. Metabotropic glutamate receptors in central nervous system disease. *Curr. Drug Targets* **2016**, *17*, 538–616.

- (3) Conn, P. J.; Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. *Annu. Rev. Pharmacol. Toxicol.* **1997**, *37*, 205–237.
- (4) Melancon, B. J.; Hopkins, C. R.; Wood, M. R.; Emmitte, K. A.; Niswender, C. M.; Christopoulos, A.; Conn, P. J.; Lindsley, C. W. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. *J. Med. Chem.* 2012, 55, 1445–64.
- (5) Emmitte, K. A. $mGlu_5$ negative allosteric modulators: a patent review (2013–2016). Expert Opin. Ther. Pat. **2017**, 27, 691.
- (6) Emmitte, K. A. Recent Advances in the Design and Development of Novel Negative Allosteric Modulators of mGlu₅. ACS Chem. Neurosci. **2011**, 2, 411–432.
- (7) Hao, J.; Xiong, H. SAR Studies on $mGlu_5$ Receptor Positive Allosteric Modulators (2003–2013). Curr. Top. Med. Chem. **2014**, 14, 1789–1841.
- (8) Rascol, O.; Fox, S.; Gasparini, F.; Kenney, C.; Di Paolo, T.; Gomez-Mancilla, B. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. *Parkinsonism Relat. Disord.* **2014**, *20*, 947–956.
- (9) Pop, A. S.; Gomez-Mancilla, B.; Neri, G.; Willemsen, R.; Gasparini, F. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGlu R_5) antagonists and drug development. *Psychopharmacology* **2014**, 231, 1217.
- (10) Silverman, J. L.; Smith, D. G.; Rizzo, S. J.; Karras, M. N.; Turner, S. M.; Tolu, S. S.; Bryce, D. K.; Smith, D. L.; Fonseca, K.; Ring, R. H.; Crawley, J. N. Negative Allosteric Modulation of the mGluR₅ Receptor Reduces Repetitive Behaviors and Rescues Social Deficits in Mouse Models of Autism. *Sci. Transl. Med.* **2012**, *4*, 131ra51.
- (11) Zerbib, F.; Bruley des Varannes, S.; Roman, S.; Tutuian, R.; Galmiche, J. P.; Mion, F.; Tack, J.; Malfertheiner, P.; Keywood, C. Randomized clinical trial: effects of monotherapy with ADX10059, a $mGluR_5$ inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. *Aliment. Pharmacol. Ther.* **2011**, 33, 911–921.
- (12) Mihov, Y.; Hasler, G. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: A Therapeutic Window. *Int. J. Neuropsychopharmacol.* **2016**, 19, pyw002.
- (13) Jaeschke, G.; Kolczewski, S.; Spooren, W.; Vieira, E.; BitterStoll, N.; Boissin, P.; Borroni, E.; Büttelmann, B.; Ceccarelli, S.; Clemann, N.; David, B.; Funk, C.; Guba, W.; Harrison, A.; Hartung, T.; Honer, M.; Huwyler, J.; Kuratli, M.; Niederhauser, U.; Pähler, A.; Peters, J. U.; Petersen, A.; Prinssen, E.; Ricci, A.; Rueher, D.; Rueher, M.; Schneider, M.; Spurr, P.; Stoll, T.; Tännler, D.; Wichmann, J.; Porter, R. H.; Wettstein, J. G.; Lindemann, L. Metabotropic glutamate receptor 5 negative allosteric modulators: discovery of 2-chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1*H*-imidazol-4-ylethynyl]pyridine (basimglurant, RO4917523), a promising novel medicine for psychiatric diseases. *J. Med. Chem.* **2015**, *58*, 1358.
- (14) Quiroz, J. A.; Tamburri, P.; Deptula, D.; Banken, L.; Beyer, U.; Rabbia, M.; Parkar, N.; Fontoura, P.; Santarelli, L. Efficacy and Safety of Basimglurant as Adjunctive Therapy for Major Depression: A Randomized Clinical Trial. *JAMA Psychiatry* **2016**, *73*, 675.
- (15) Rutrick, D.; Stein, D. J.; Subramanian, G.; Smith, B.; Fava, M.; Hasler, G.; Cha, J. H.; Gasparini, F.; Donchev, T.; Ocwieja, M.; Johns, D.; Gomez-Mancilla, B. Mavoglurant Augmentation in OCD Patients Resistant to Selective Serotonin Reuptake Inhibitors: A Proof-of-Concept, Randomized, Placebo-Controlled, Phase 2 Study. *Adv. Ther.* **2017**, *34*, 524.
- (16) Ribeiro, F. M.; Vieira, L. B.; Pires, R. G.; Olmo, R. P.; Ferguson, S. S. Metabotropic glutamate receptors and neurodegenerative diseases. *Pharmacol. Res.* **2017**, *115*, 179–191.
- (17) Hoffmann, J.; Charles, A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. *Neurotherapeutics* **2018**, *15*, 361.
- (18) Mazzitelli, M.; Presto, P.; Antenucci, N.; Meltan, S.; Neugebauer, V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. *Cells.* **2022**, *11*, 2608.

- (19) Zhang, L.; Balan, G.; Barreiro, G.; Boscoe, B. P.; Chenard, L. K.; Cianfrogna, J.; Claffey, M. M.; Chen, L.; Coffman, K. J.; Drozda, S. E.; Dunetz, J. R.; Fonseca, K. R.; Galatsis, P.; Grimwood, S.; Lazzaro, J. T.; Mancuso, J. Y.; Miller, E. L.; Reese, M. R.; Rogers, B. N.; Sakurada, I.; Skaddan, M.; Smith, D. L.; Stepan, A. F.; Trapa, P.; Tuttle, J. B.; Verhoest, P. R.; Walker, D. P.; Wright, A. S.; Zaleska, M. M.; Zasadny, K.; Shaffer, C. L. Discovery and Preclinical Characterization of 1-Methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1*H*-pyrazolo-[3,4-*b*]pyrazine (PF470): A Highly Potent, Selective, and Efficacious Metabotropic Glutamate Receptor 5 (mGluR₅) Negative Allosteric Modulator. *J. Med. Chem.* **2014**, *57*, 861.
- (20) Varnäs, K.; Cselényi, Z.; Arakawa, R.; Nag, S.; Stepanov, V.; Moein, M. M.; Johnström, P.; Kingston, L.; Elmore, C. S.; Halldin, C.; Farde, L. The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. *Neuropharmacology* **2020**, *162*, 107809.
- (21) Bennett, K. A.; Christopher, J. A.; Tehan, B. G. Structure-based discovery and development of metabotropic glutamate receptor 5 negative allosteric modulators. *Adv. Pharmacol.* **2020**, *88*, 35.
- (22) Felts, A. S.; Rodriguez, A. L.; Blobaum, A. L.; Morrison, R. D.; Bates, B. S.; Thompson Gray, A.; Rook, J. M.; Tantawy, M. N.; Byers, F. W.; Chang, S.; Venable, D. F.; Luscombe, V. B.; Tamagnan, G. D.; Niswender, C. M.; Daniels, J. S.; Jones, C. K.; Conn, P. J.; Lindsley, C. W.; Emmitte, K. A. Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): A Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Selected for Clinical Evaluation. J. Med. Chem. 2017, 60, 5072.
- (23) Crouch, R. D.; Blobaum, A. L.; Felts, A. S.; Conn, P. J.; Lindsley, C. W. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu₅-Negative Allosteric Modulator VU0424238 (Auglurant). *Drug Metab. Dispos.* **2017**, *45*, 1245–1259.
- (24) Felts, A. S.; Bollinger, K. A.; Brassard, C. J.; Rodriguez, A. L.; Morrison, R. D.; Daniels, J. S.; Blobaum, A. L.; Niswender, C. M.; Jones, C. K.; Conn, P. J.; Emmitte, K. A.; Lindsley, C. W. Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. *Bioorg. Med. Chem. Lett.* 2019, 29, 47–50.
- (25) Barbaro, L.; Rodriguez, A. L.; Blevins, A. N.; Dickerson, J. W.; Billard, N.; Boutaud, O.; Rook, J. L.; Niswender, C. M.; Conn, P. J.; Engers, D. W.; Lindsley, C. W. Discovery of "Molecular Switches" within a Series of mGlu₅ Allosteric Ligands Driven by a "Magic Methyl" Effect Affording Both PAMs and NAMs with In Vivo Activity, Derived from an M1 PAM Chemotype. ACS Bio. Med. Chem. Au. 2021, 1, 21–30.