
pubs.acs.org/jmc

Article

Development of VU6036864: A Triazolopyridine-Based High-Quality Antagonist Tool Compound of the M₅ Muscarinic Acetylcholine Receptor

Jinming Li, Douglas L. Orsi, Julie L. Engers, Madeline F. Long, Rory A. Capstick, Mallory A. Maurer, Christopher C. Presley, Paige N. Vinson, Alice L. Rodriguez, Allie Han, Hyekyung P. Cho, Sichen Chang, Megan Jackson, Michael Bubser, Anna L. Blobaum, Olivier Boutaud, Michael A. Nader, Colleen M. Niswender, P. Jeffrey Conn, Carrie K. Jones, Craig W. Lindsley,* and Changho Han*

ABSTRACT: While the muscarinic acetylcholine receptor mAChR subtype 5 (M_5) has been studied over decades, recent findings suggest that more in-depth research is required to elucidate a thorough understanding of its physiological function related to neurological and psychiatric disorders. Our efforts to identify potent, selective, and pharmaceutically favorable next-generation M_5 antagonist tool compounds have led to the discovery of a novel triazolopyridine-based series. In particular, **VU6036864** (**45**) showed exquisite potency (human M_5 IC₅₀ = 20 nM), good subtype selectivity (>500 fold selectivity against human M_{1-4}), desirable brain exposure (K_p = 0.68, $K_{p,uu}$ = 0.65), and high oral bioavailability (%F > 100%). **VU6036864** (**45**) and its close analogues will support further studies of M_5 as advanced antagonist tool compounds and play an important role in the emerging biology of M_5 .

■ INTRODUCTION

Muscarinic acetylcholine receptors (mAChRs) are class A GPCRs composed of five subtypes, M₁-M₅. The interplay between the muscarinic ACh receptors (mAChRs) and their ligand, acetylcholine (ACh), is responsible for important functions including learning, memory, and involuntary muscle contraction in various organs including the brain.^{1,2} In general, expression levels of each subtype vary in different tissues and organs, and the physiological roles of each subtype vary accordingly. Of these subtypes, M₁ and M₄ are expressed in specific regions of the brain and play an important role in the central nervous system (CNS). 1,3 Besides CNS-related functions, mAChRs have also been shown to play a role in tumor progression and metastasis through specific signaling pathways, and particular subtypes, such as M3 have emerged as cancer treatment options.^{4,5} Although less abundantly expressed in the CNS than the M₁ and M₄ receptors, M₅ is highly expressed in dopamine neurons in the ventral tegmental area and the substantia nigra.^{6,7} Previously, several reports on the M₅ receptor suggested that M₅ may be an additional emerging therapeutic target. 8-15 However, recent studies highlighted the complex nature of M5 biology and underscored the importance of further investigation into its role. 16,17

In short, the physiological role of M_5 remains unclear even decades after its initial identification and in-depth studies from multiple angles using a variety of tools are still required.

45, VU6036864

As illustrated in Figure 1 with a crystal structure of M_5 , allosteric ligands that activate or inhibit M_5 generally bind to the outer surface of the receptor above the orthosteric binding site, whereas orthosteric ligands have their binding sites within the transmembrane domain of the receptor. To date, two allosteric inhibitors 1 and 2 (or negative allosteric modulators) and five orthosteric inhibitors 3–7 (or orthosteric antagonists) have been reported as early generation inhibitor tools for M_5 (Figure 1). Nonetheless, efforts to identify clinically acceptable compounds and better understand the physiological role of the M_5 receptor remain unmet needs. Herein, we report the discovery effort that led to the identification of VU6036864

Received: May 23, 2024 Revised: July 25, 2024 Accepted: July 29, 2024 Published: August 6, 2024

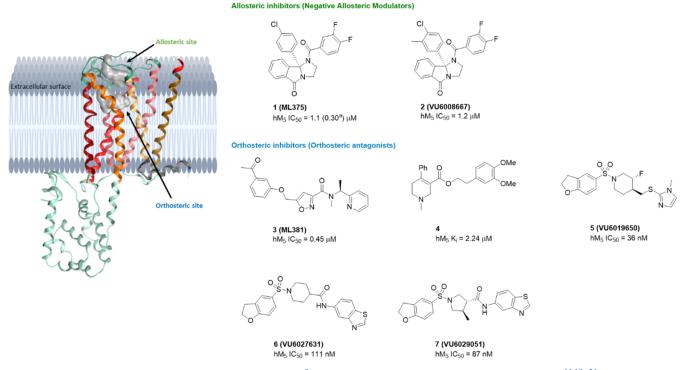


Figure 1. Crystal structure of M_5 mAChR (PDB code: 6OL9)⁹ and reported allosteric and orthosteric M_5 inhibitors. ^{11,18-21} a IC₅₀ value was obtained from a 96-well FlexStation II microplate reader.

(45) and its close analogues, which will be used to better understand M_5 biology.

RESULTS AND DISCUSSION

Design Rationale for A New Chemotype. Our journey to find clinically amenable M5 antagonists, starting from a potent and selective M₅ antagonist VU6019650 (5), had reached a stage where the focus needed to be on optimizing brain exposure in addition to clearance. Although compounds within piperidine and pyrrolidine amide-based M₅ antagonists (exemplified by 6 and 7) showed good potencies with improvement in clearance profiles, their brain exposures were still suboptimal due to P-gp recognition. 20,21 To overcome these challenges, we attempted to remove the hydrogen bond donor by methylating the amide NH as compounds lacking hydrogen bond donors tend not to be recognized by P-gp.² However, methylation of the amide linkage was not tolerated and new chemotypes had to be devised through a scaffold hopping exercise.²⁰ In this regard, compound 8, found during the core modification exercises, became an excellent hybridization starting point (Scheme 1). While 8 lacked hydrogen bond donors, it was still moderately potent (hM₅ IC₅₀ = 2.6 μ M, ACh_{min} = 2%).

Compound 9 was designed under the assumption that the phenyl ring translocated to imidazole in the tetrahydroisoquinoline core of 8 could mimic the benzo[d]thiazole ring of 6 or 7, and that a methyl substituent in 8 could mimic the chiral methyl of 7 without interfering with the interaction of the triazolopyridine nitrogen atom if it were translocated to the 6-position of the triazolopyridine. As blocking the heteroatoms of the benzo[d]thiazole ring of 6 was observed to reduce potency in the past, we thought it was important to locate the substitution of the methyl group without disturbing the triazolopyridine nitrogen atom. ²⁰ In addition to compound

9, triazolopyridine regioisomer 10 was synthesized in parallel, maintaining the same overall design logic.

Although the potency of 9 was very weak, we were pleased to see that compound 10 had improved potency compared to compound 8 (9; $hM_5 IC_{50} > 10,000 nM$, $ACh_{min} = 59\%$, 10; hM_5 IC₅₀ = 111 nM, ACh_{min} = 2%). Compound 11 was also synthesized to test our hypothesis that the position of the methyl substituent is important. As expected, 11 was inactive, indicating that both nitrogen atoms of the triazolopyridine ring had to be exposed, similar to the cases in which the heteroatoms on benzo d thiazole rings of 6 and 7 had to be exposed to maintain efficacies. Between the triazolopyridine regioisomers 9 and 10, the one on 10 was selected as an optimal new starting point based on the potency. With a new chemotype possessing excellent potency in hand, we sought to explore the SAR around compound 10 and profile selected analogues to find compounds with desirable clearance and brain exposure.

Structure—**Activity Relationship.** Our initial investigations were focused on the sulfonamide substituent (Table 1). Attempts to increase the ring size from a 5,6-fused ring (**10**; 2,3-dihydrobezofuran) to a 6,6-fused ring system resulted in a loss of potency in general (**12**; hM $_{5}$ IC $_{50}$ = 187 nM, ACh $_{min}$ = 2%, **13**; hM $_{5}$ IC $_{50}$ = 1520 nM, ACh $_{min}$ = 3%, and **14**; hM $_{5}$ IC $_{50}$ = 547 nM, ACh $_{min}$ = 3%). Based on this SAR trend, we hypothesized that a 5,6-fused ring might be an optimal size and replaced 2,3-dihydrobezofuran of **10** with alternative 5,6-fused rings such as benzimidazole. However, the benzimidazole was not tolerated as well (**15**; hM $_{5}$ IC $_{50}$ = 5200 nM, ACh $_{min}$ = 5%).

From our previous experience with piperidine and pyrrolidine amide-based M_5 antagonists (exemplified by compounds 6 and 7), we found that smaller-size rings provide a surprising potency boost or drop-off. Therefore, pyridine-based analogs (16 and 17) and 5-membered heterocycle-containing analogs were also explored (19–26).

Scheme 1. Rationalized Design of Triazolopyridine-Based M5 Antagonists

$$O_{10}$$
 O_{10}
 O

Similar to piperidine amide-based M5 antagonists, 5membered heterocycles like pyrazole were well tolerated. However, pyridine-based analogs showed much weaker efficacy compared to 5-membered heterocycle-based analogs (16; hM₅ $IC_{50} = 4350 \text{ nM}, ACh_{min} = 7\%, 17; hM_5 IC_{50} > 10,000 \text{ nM},$ $ACh_{min} = 42\%$). While the 1',3'-dimethyl-1*H*-pyrazole containing analog 19 was modestly more potent (19; hM₅ IC_{50} = 59 nM, ACh_{min} = 1%) compared to compound 10 (hM₅ $IC_{50} = 111$ nM, $ACh_{min} = 2\%$), adding a 5'-position methyl substituent noticeably increased potency (20; hM_5 IC₅₀ = 39 nM, ACh_{min} = 2%). To determine whether the 3'-position substituent is essential for potency, compound 21 with 1',5'dimethyl substituents was also tested. Interestingly, 21 still retained potency without a 3'-position methyl substituent (21; hM_{5} IC_{50} = 28 nM, ACh $_{min}$ = 2%). Therefore, we focused on a 5'-position substitution without any substituent on a 3'position of pyrazole.

Attempts to replace the 5′-methyl of compound 21 with chlorine resulted in a significant potency increase (22; hM_5 $IC_{50} = 7.4$ nM, $ACh_{min} = 2\%$). This SAR trend could imply that an increase in hydrophobicity is favored, or that the chlorine atom is forming additional interactions, such as halogen bonding interactions. To test these possibilities and further understand the SAR trend, we prepared compound 23 with 5,5-fused bicycle moiety and found that 23 exhibited similar potency to 22, confirming that the potency boost may be due to hydrophobicity rather than additional interactions (23; hM_5 $IC_{50} = 11$ nM, $ACh_{min} = 3\%$, 22; hM_5 $IC_{50} = 7.4$ nM, $ACh_{min} = 2\%$).

5-Membered heterocycles with enhanced basicity compared to a pyrazole were also explored. We anticipated compounds with enhanced basicity might form stronger hydrogen bonding interactions with the receptor, resulting in an additional potency enhancement or a slight increase in aqueous solubility

Table 1. SAR of Sulfonylated Aryl Variants^a

Cmpd R =	hM ₅ IC ₅₀ (nM)	hM ₅ pIC ₅₀ [ACh _{min} (%)]	Cmpd R =	hM ₅ IC ₅₀ (nM)	hM ₅ pIC ₅₀ [ACh _{min} (%)]
10	111	6.96 [2]	19 1 5' N 4' 2' 3'	59	7.23 [1]
12	187	6.73 [2]	20 N	39	7.41 [2]
13	1520	5.82 [3]	21 N	28	7.55 [2]
14 N	547	6.26 [3]	CI CI N	7.4	8.13 [2]
15 H	5200	5.28 [5]	23 N	11	7.95 [3]
16 N	4350	5.36 [7]	24 N	19	7.72 [2]
17 N	>10,000	<5.00 [42]	25 N	91	7.04 [2]
18 F	1240	5.91 [9]	26 N	136	6.87 [2]

"Calcium mobilization assays in hM $_5$ CHO cells. Refer to the Supporting Information (SI) Experimental Section for assay conditions. IC $_{50}$ values for hM $_5$ represent the means from a minimum of two independent experiments performed in triplicate. ACh $_{min}$ (%) represents the remaining Ca response measured in the presence of an ACh EC $_{80}$ concentration. Refer to the Molecular formula strings (CSV) file for additional details including mean \pm SEM.

while maintaining efficacy. As expected, explored alternative 5-membered heterocycles such as imidazoles or thiazoles were tolerated as well. While 1,2-dimethyl-1H-imidazole was slightly more potent than 1,5-dimethyl-1H-pyrazole (24; hM₅ IC₅₀ = 19 nM, ACh_{min} = 2%, 21; hM₅ IC₅₀ = 28 nM, ACh_{min} = 2%), the 2,4-dimethylthiazole moiety was slightly less potent compared to the 1,3-dimethyl-1H-pyrazole moiety (25; hM₅ IC₅₀ = 91 nM, ACh_{min} = 2%, 20; hM₅ IC₅₀ = 39 nM, ACh_{min} = 2%). In addition, monomethyl thiazole analogue 26 was not as potent, reiterating the importance of space filling with hydrophobic moiety around the upper part of the ring for potency (26; hM₅ IC₅₀ = 136 nM, ACh_{min} = 2%).

Lastly, a disubstituted phenyl ring (compound 18) was also explored to see whether two fluorine atoms (or substituents) could mimic the oxygen atom of 2,3-dihydrobenzofuran and the nitrogen atom of 5-membered azoles at the same time. While compound 18 was still moderately active, it was significantly weaker than 5-membered azole-based analogues (18; $hM_5 IC_{50} = 1240 nM$, $ACh_{min} = 9\%$). Therefore, our focus remained on the 5-membered azoles. However, it should be

noted that adding hydrophobic substituents to the upper part of the ring could further enhance the efficacy.

Due to the high potency gained in 22, our SAR investigation then moved to the triazolopyridine side while maintaining the 5-chloro-1-methyl-1H-pyrazole and piperidine (Table 2). Although the ideal methyl substituent position was confirmed with 10 and 11 (Scheme 1), a desmethyl analogue such as 27 was needed to demonstrate the substituent effect. As shown in Table 2, 27 was over 20-fold weaker compared to compound 22, indicating the importance of substituent on the 7-position of the triazolopyridine ring (27; $hM_5 IC_{50} = 176 nM$, $ACh_{min} =$ 3%). While a chlorine atom, a bioisostere of methyl, was well tolerated (28, hM_5 IC₅₀ = 8.3 nM, ACh_{min} = 2%), a fluorine atom was about 2.5-fold weaker (29, hM_5 IC₅₀ = 19 nM, ACh_{min} = 1%). This SAR trend suggested that larger substituents might be preferred at the 7-position of the triazolopyridine ring. Therefore, analogs with larger hydrophobic substituents were prepared (compounds 30-32). Although larger hydrophobic substituents were tolerated, their potencies were notably weaker compared to compounds

Table 2. SAR of the Azolopyridine Variants^a

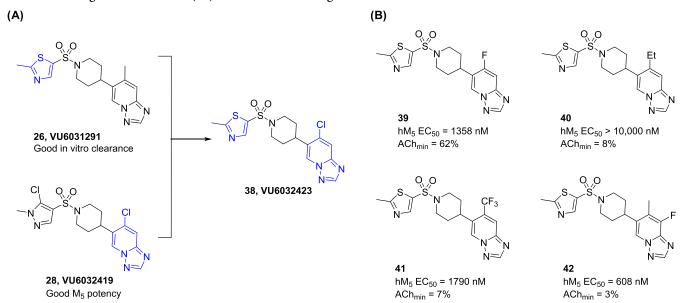
Cmpd R =	hM ₅ IC ₅₀ (nM)	hM ₅ pIC ₅₀ [ACh _{min} (%)]	Cmpd R =	hM ₅ IC ₅₀ (nM)	hM ₅ pIC ₅₀ [ACh _{min} (%)]
22 5 4 N 1 N = 2	7.4	8.13 [2]	32 N N=/	42	7.37 [2]
27 N N	176	6.75 [3]	33 OMe	518	6.29 [2]
28 CI N N	8.3	8.08 [2]	34 N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.N.	111	6.96 [2]
29 F N N N N N N N N N N N N N N N N N N	19	7.73 [1]	35 N N N=/	31	7.52 [2]
30 CF ₃	55	7.26 [3]	36 N.N.N.N	8.2	8.08 [2]
S1 Et	21	7.67 [2]	37 N N	10	8.02 [2]

[&]quot;Calcium mobilization assays in hM_5 CHO cells. Refer to the Supporting Information Experimental Section for assay conditions. IC_{50} values for hM_5 represent the means from a minimum of two independent experiments performed in triplicate. ACh_{min} (%) represents the remaining Ca response measured in the presence of ACh EC_{80} concentration. Refer to the Molecular formula strings (CSV) file for additional details including mean \pm SEM.

22 and 28. (30; CF_3 ; hM_5 $IC_{50} = 55$ nM, $ACh_{min} = 3\%$, 31; Et; hM_5 $IC_{50} = 21$ nM, $ACh_{min} = 2\%$, 32; cyclopropyl; hM_5 $IC_{50} = 42$ nM, $ACh_{min} = 2\%$). However, hydrophobic substituents were much more potent than hydrophilic substituents such as methoxy (33, hM_5 $IC_{50} = 518$ nM, $ACh_{min} = 2\%$).

This SAR trend was also maintained in aza-triazolopyridine-based analogues. Both compound **34** with 5-aza-triazolopyridine and compound **35** with 8-aza-triazolopyridine were less potent compared to compound **22**. (**34**; hM $_5$ IC $_{50}$ = 111 nM, ACh $_{min}$ = 2%, **35**; hM $_5$ IC $_{50}$ = 31 nM, ACh $_{min}$ = 2%, **22**; hM $_5$ IC $_{50}$ = 7.4 nM, ACh $_{min}$ = 2%). Interestingly, the removal of a nitrogen atom from the 3-position of compound **34** resulted in a significant boost in potency (**36**; hM $_5$ IC $_{50}$ = 8.2 nM, ACh $_{min}$ = 2%). Although the compound became more soluble, imidazo[1,2-b] pyridazine-based analogues generally suffered from poor subtype selectivity (*data not shown*). Therefore, triazolopyridines have remained as a lead series.

Lastly, since the hydrophobic nature was generally favored, we attempted to incorporate an additional fluorine atom into 22, and the small fluorine atom on the 8-position of


triazolopyridine was well tolerated (37; hM_5 IC₅₀ = 10 nM, ACh_{min} = 2%).

Tier 1 DMPK Profile of Selected Compounds. Selected compounds from the initial SAR exploration were then advanced to the subsequent tier 1 DMPK profiling stage (Table 3 and see SI S3 for additional available DMPK profiling data for the remaining compounds). In general, compounds within the triazolopyridine-based series showed favorable DMPK profiles. The molecular weights (MWs) of synthesized analogues were far below 500, cLogPs were below 2, and TPSAs were below 100. Compounds such as 19 and 26 remain low to moderate in vitro clearance even after the scaffold hopping from the pyrrolidine amide series (19; predicted human $CL_{hep} = 5$; predicted rat $CL_{hep} = 14 \text{ mL/min/kg}$, (26; predicted human $CL_{hep} = 7$; predicted rat $CL_{hep} = 27 \text{ mL/min/}$ kg). In addition, the triazolopyridine series showed an excellent $f_{\rm u}$ in general ($f_{\rm u} > 0.1$ in many cases). As expected, P-gp liability was not as severe due to the absence of hydrogen bond donors in general. Especially, compounds 26 and 28 were not P-gp substrates (26; ER = 3.46, 28; ER = 1.78). CYP inhibition profiles were also generally acceptable, although

Table 3. Tier 1 DMPK Profiles for Selected M5 Antagonists

Structure	-N-S-N-N-19	\$\ \text{S} \ \text{N}	CI O O CI N N N N N N 28
VU ID	VU6029738	VU6031291	VU6032419
MW	374.46	377.48	415.29
cLogP	1.30	1.71	1.72
TPSA	80.9	77.7	80.9
hM_5IC_{50} (nM)	59	136	8.3
$rM_5 IC_{50} (nM)$	303	667	9
hM_1IC_{50} (nM)	inactive	>10000	112
Predicted human CL _{hep} (mL/min/kg)	5	7	14
Predicted rat CL _{hep} (mL/min/kg)	14	27	45
Human f _{u,plasma}	0.14	0.40	0.19
Rat f _{u,plasma}	0.29	0.26	0.08
Rat f _{u,brain}	0.37	0.23	0.13
K _p (rat)	0.10	0.26	0.34
K _{p,uu} (rat)	0.13	0.23	0.60
P-gp ER	34.7	3.46	1.78
P _{app} (10-6 cm/s)	1.68	20	29.6
CYP IC ₅₀ (μM) 1A2, 2C9 2D6, 3A4	n/a	>30, >30 2.6, 4.4	>30, 29 5.8, 4.6

Scheme 2. Design of VU6032423 (38) and Its Close Analogues^a

^a(A) 38 is designed as a mix and match of 26 and 28. (B) Potencies of 39-42.

some compounds showed marginal CYP inhibitory activity, particularly against CYP 2D6 and 3A4.

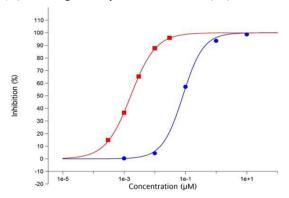
Slight differences in DMPK profiles within structurally related subseries often provide an excellent mix-and-match opportunity. While compound **26** is considerably weaker compared to compound **28** (hM $_{\rm 5}$ IC $_{\rm 50}$ = 136 and 8.3 nM, respectively), its *in vitro* clearance profile was much more attractive (predicted human CL $_{\rm hep}$ = 7 and 14 mL/min/kg, respectively). Because both compounds **26** and **28** were not P-gp substrates, they were selected as mix-and-match candidates. (Scheme **2A**).

Compound **38** was designed based on the 2-methylthiazole moiety from **26** and 7-chloro-[1,2,4]triazolo[1,5-*a*]pyridine

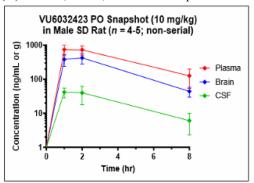
from 28. As shown in Table 4, compound 38 was quite potent $(38, hM_5 IC_{50} = 50 nM, ACh_{min} = 2\%)$. Besides, the binding affinity and functional efficacy of 22 were closely aligned (51 nM and 50 nM, respectively, Figure 2A). Full displacement of the radioligand observed in this binding assay suggests an orthosteric mechanism of action similar to 5; additionally, several compounds within the series were evaluated using kinetic binding and were consistent with a competitive interaction (*data not shown*). Unexpectedly, while *in vitro* clearance profile (38; predicted human $CL_{hep} = 13$; predicted rat $CL_{hep} = 42 mL/min/kg$) and P-gp efflux ratio (P-gp ER = 1.49) were still similar to compound 28, the CYP inhibition

Table 4. Profile of VU6032423 (38)

Structure	0,0 N CI N N N
VU ID	VU6032423
MW	397.90
cLogP	1.98
TPSA	77.7
IC ₅₀ (nM)[ACh _{min} (%)] hM ₅ , hM ₄ , hM ₃ , hM ₂ , hM ₁	50[2], >10000[33], >10000[64], >10000[42], >10000[29]
IC ₅₀ (nM)[ACh _{min} (%)] rM ₅ , rM ₄ , rM ₃ , rM ₂ , rM ₁	157[3], >10000[49], >10000[64], >10000[48], 6475[10]
IC ₅₀ (nM)[ACh _{min} (%)] mM ₅	49[8]
Predicted CL _{hep} (mL/min/kg) h, r, m, d, c	13, 42, 68, 18, 29
$ \begin{array}{c} f_{u,plasma} \\ (h,r,m,d,c,rh) \end{array} $	0.20, 0.09, 0.16, 0.20, 0.13, 0.13
$ \begin{array}{c} f_{u,brain} \\ (r,m) \end{array} $	0.16, n/a
CYP IC ₅₀ (μM) 1A2, 2C9	>30, >30 >30, 17.3
2D6, 3A4 P-gp ER	1.49
Papp (x 10-6 cm/s)	44
K_p (rat)	0.75
K _{p,uu} (rat)	1.40
p,uu ()	Rat IV PK (discrete)
Dose (mg/kg)	1
Formulation	10% EtOH, 40% PEG400, 50% saline
t _{1/2} (term) (h)	11
MRT (h)	1.8
CL _p (mL/min/kg)	15.6
Vd _{ss} (L/kg)	1.68
	Rat PO PK (discrete)
Dose (mg/kg)	10
Formulation	10% Tween80 in water
C _{max} (ng/mL)	1435 (free base) 853 (HCl salt)
T _{max} (hr)	0.75 (free base) 3.0 (HCl salt)
AUC _{inf} (h*ng/mL)	5163 (free base) 7327 (HCl salt)
%F (PO)	48% (free base) 68% (HCl salt)
	Dog PO PK (discrete)
Dose (mg/kg)	3
Formulation	0.5% MC, 0.1% Tween80 in saline
C _{max} (ng/mL)	39.9
T _{max} (hr)	1.67
AUC _{inf} (h*ng/mL)	426
%F (PO)	9%

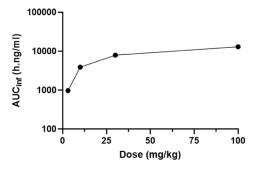

profile was notably improved (38; CYP IC $_{50}$ 1A2, 2C9, 2D6, and 3A4 = > 30, > 30, > 30, and 17.2 μ M).

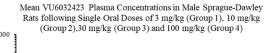
To further improve the *in vitro* clearance profiles, substituents on the triazolopyridine ring were explored (Scheme 2B). However, analogues with different substituents were not as potent (39-42). Therefore, compound 38 was selected as a first-generation lead compound within the newly

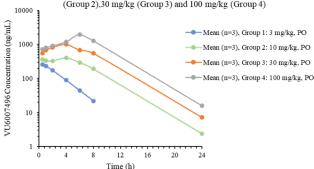

discovered triazolopyridine series and advanced to the subsequent tier 2 DMPK profiling exercise (Table 4).

Detailed Profile of 38. The overall profile of compound 38 was promising (Table 4). Molecular weight, cLogP, and TPSA values were still in drug-like chemical space (MW = 397.9, cLogP = 1.98, and TPSA = 77.7). In addition, it was potent and subtype-selective (hM₅ IC₅₀ = 50 nM, ACh_{min} =

(A) Binding affinity of VU6032423 (38)


(B) Plasma, Brain, and CSF compound concentration of VU6032423 (38)




Snapshot PK Study (PO, 10 mg/kg)							
Compound	Time (hr)	Plasma Unbound (nM)	Brain Unbound (nM)	CSF (nM)			
	1	160	153	105			
VU6032423	2	156	169	100			
	8	26.9	17.4	15.3			

(C) Dose escalation study of VU6032423 (38)

Mean AUC $_{\rm inf}$ versus Dose of VU6032423 after Single Oral Doses to Male SD Rats (n=3)

Rat PO PK (Dose Escalation in 10% Tween 80)							
Dose (mg/kg)	T _{max} (h)	C _{max} (μM)	C _{max,u} (nM)	AUC _{inf} (h*μM)	AUC _{inf,u} (h*nM)	AUC _{inf,u} /Dose (h*nM*kg/mg)	
3	0.5	0.61	51.7	2.44	220	73.3	
10	3.0	1.14	96.8	9.80	882	88.2	
30	2.3	2.01	171	20.0	1796	59.9	
100	3.7	3.59	305	32.7	2940	29.4	

Figure 2. Tier 2 DMPK profiles of VU6032423 (38) (A) The binding affinity of VU6032423 was measured against the human M5 receptor and results are presented as the percent inhibition of specific binding. Red box solid 4-DMAP (control): $IC_{50} = 1.64$ nM and $K_i = 1.02$ nM blue circle solid VU6032423: $IC_{50} = 50$ nM and $K_i = 51$ nM; Eurofins Panlabs Discovery Services study #: TW04-0006869, (B) Plasma, brain, and CSF compound concentration of VU6032423 after 10 mg/kg PO dosing in 10% Tween 80 in water. Samples were obtained at 1, 2, and 8 h time points. The table shows a summary of the total and unbound concentrations in each compartment. (C) Dose escalation study result of VU6032423. Mean AUCinf versus 3, 10, 30, and 100 mg/kg dosing of VU6032423 in 10% Tween 80 in water.

Proposed Metabolite Structures of VU6032423

	Relative abundance (% of total MS response)										
Identifier	VU6032423	A	В	C	D	E	F	G	H	I	J
Rat	49.6	23.8	4.8	7.3	<1	<1	<1	ND	ND	13.4	<1
Dog	88.4	6.4	1.5	ND	ND	1.5	<1	ND	ND	1.1	1.1
Monkey	81.1	7.5	ND	ND	1.2	2.3	<1	1.1	1.7	1.7	3.2
Human	96.7	3.1	ND	ND	ND	ND	ND	ND	ND	<1	<1
No Cell	100.0	ND	ND	ND	ND	ND	ND	ND	ND	<1	ND

Figure 3. Multispecies metabolite identification of VU6032423 (38). Metabolite A was the most abundant metabolite in human hepatocytes with a good preclinical safety species coverage. ND = Not Detected.

2%, > 200 fold-selective against human M_{1-4}). While the overall receptor subtype selectivity trend was retained in rat (r M_1 IC $_{50}$ = 6475 nM and r M_{2-4} IC $_{50}$ > 10,000 nM), moderate species differences in potency were noticed with rat M_5 , but not with mouse M_5 (r M_5 IC $_{50}$ = 157 nM, ACh $_{min}$ = 3%, m M_5 IC $_{50}$ = 49 nM, ACh $_{min}$ = 8%). It is worth mentioning that although 38 selectively antagonized the M_5 receptor in functional assays, 38 possessed weak binding affinities against M_2 and M_4 receptor subtypes and its K_i s were 1.1 and 2.1 μ M, respectively (See SI S4). Notably, compound 38 revealed a relatively clean ancillary pharmacology profile (see SI S10).

Predicted *in vitro* CL_{hep} values were low to moderate across species (human, rat, mouse, dog, and cyno = 13, 42, 68, 18, 29 mL/min/kg). In addition, both plasma and brain f_u values were excellent (>0.1 across all tested species). As mentioned, the CYP inhibition profile was good as well (38; CYP IC₅₀ 1A2, 2C9, 2D6, and 3A4 = > 30, > 30, > 30, and 17.3 μ M, respectively). Lastly, compound 38 was not a P-gp substrate with an efflux ratio of 1.49.

Rat *in vivo* DMPK profiles from IV and PO PK studies were also promising. The half-life was 11 h with a MRT of 1.8 h. CL_p was 15.6 mL/min/kg and V_{ss} was 1.68 L/kg. While %F with 10% Tween80 in water was 48%, oral bioavailability was significantly improved with the HCl salt (68%). In the latter case, $C_{\rm max}$ was 853 ng/mL with $T_{\rm max}$ of 3.0 h. AUC was 7327 h*ng/mL. However, dog PK was not as appealing. Oral bioavailability was 9% with 3 mg/kg dosing. $C_{\rm max}$ was 39.9 ng/mL with $T_{\rm max}$ of 1.67 h. AUC was 426 h*ng/mL.

As shown in Figure 2B, a high concentration of compound was detected during the rat PK snapshot study. Both brain unbound concentration and CSF concentration were above the IC $_{50}$ within 2 h time points. Exposure increased with dose and plateaued between 10 and 30 mg/kg, suggesting decreased absorption at higher doses (Figure 2C; 3, 10, 30, and 100 mg/kg). At 100 mg/kg dosing, $C_{\rm max,unbound}$ was 305 nM with AUC $_{\rm unbound}$ of 5227 h*nM. $T_{\rm max}$ was 3.67 h.

38 was also subjected to multispecies metabolite identification (MetID) studies (Figure 3). It was fairly stable within 4 h of study time in all selected species, especially higher

species (dog, monkey, and human). Because metabolite A (Met-A) was the most abundant metabolite in human hepatocytes with a good preclinical safety species coverage, we advanced it to further profiling (Table 5).

Table 5. Profile of Met-A (43)

VU ID	VU6043296
MW	397.90
cLogP	1.98
TPSA	77.7
$hM_5 IC_{50} (nM)/ACh_{min} (\%)$	385/2
$rM_5 IC_{50} (nM)/ACh_{min} (\%)$	2105/6
predicted human CL _{hep} (mL/min/kg)	9.4
predicted rat CL _{hep} (mL/min/kg)	16
human $f_{u,plasma}$	0.17
$\operatorname{rat} f_{\operatorname{u,plasma}}$	0.12
$\operatorname{rat} f_{\operatorname{u,brain}}$	0.16
Rat IV PK (Cassette)	
$t_{1/2}$ (term) (h)	1.47
MRT (h)	1.49
Cl obs (mL/min/kg)	12
$Vd_{ss}^{-}(L/kg)$	1.1
AUC _{inf} (hr*ng/mL)	276
$K_{ m p}$	0.05
$K_{ m p,uu}$	0.06

While it was not as potent compared to the parent 38, Met-A (43) was active against both human and rat M_5 (h M_5 IC $_{50}$ = 385 nM, ACh $_{min}$ = 2%, r M_5 IC $_{50}$ = 2105 nM, ACh $_{min}$ = 6%). In addition, 43 turned out to be peripherally restricted (K_p = 0.05, $K_{p,uu}$ = 0.06). Notably, the *in vitro* clearance profile of 43 was significantly improved compared to compound 38 (predicted human CL $_{hep}$ = 9.4; predicted rat CL $_{hep}$ = 16 mL/min/kg). Since the hydrophobic methyl is already decorated with a polar

group (OH), CYP-mediated oxidation should be bypassed and result in low *in vitro* clearance. Likewise, modulating polarity around the metabolic soft spot can be a good approach to decrease metabolism.

Compound-mediated inhibition of the hERG channel is recognized as the primary source of cardiotoxicity. ²³ Because the thiazole moiety of 38 is slightly basic, compound 38 was then tested in the cardiac panel screen at 10 μ M concentration (see SI S16). Unfortunately, compound 38 inhibited the hERG channel (62.8% at 10 μ M and IC₅₀ of 6.5 μ M) and warranting follow-up studies.

Further Optimization of 38. To address the hERG issue, the molecule was fine-tuned starting from compound 38 (Scheme 3). Since a basic nitrogen atom within hydrophobic molecules tends to be recognized by hERG, the thiazole ring of 38 was replaced with an oxazole to reduce the basicity. This modification reduced hERG inhibition and unexpectedly enhanced potency, selectivity, and the DMPK profile (Table 6).

Compound 44 was slightly more potent and subtype-selective than 38 (hM $_5$ IC $_{50}$ = 21 nM, ACh $_{\rm min}$ = 2%, > 500 fold-selective against human M $_{1-4}$) and species differences in antagonist potency were within 2-fold (rM $_5$ IC $_{50}$ = 51 nM, ACh $_{\rm min}$ = 2%, mM $_5$ IC $_{50}$ = 47 nM, ACh $_{\rm min}$ = 7%) while f $_{\rm uv}$ CYP profiles, P-gp ER, and $K_{\rm p}$ remained comparable to 38 (Table 6 and SI SS). Compound 44 also possessed a good overall receptor subtype selectivity trend in rat (rM $_1$ IC $_{50}$ = 2576 nM rM $_2$ IC $_{50}$ > 10,000 nM, rM $_{3,4}$ IC $_{50}$ = inactive). In addition, *in vivo* DMPK profiles, including %F, were similar or slightly better than 38.

Interestingly, while the majority of parameters were comparable (Table 6), the most noticeable difference between 38 and 44 was their major metabolic soft spot (Scheme 3 and SI S4). Because of slight differences in the methyl-attached 5-membered heterocycle, the metabolic soft spot was migrated

Scheme 3. Basicity Modulation and Subsequent Deuterium Decoration of VU6032423 (38)

major metabolic soft spot

Decrese basicity to address hERG liability

38, VU6032423

hERG IC₅₀ = 6.5
$$\mu$$
M

Kinetic isotope effect

A4, VU6035406

hERG IC₅₀ = 16.3 μ M

Kinetic isotope effect

Table 6. Profile Comparison of VU6035406 (44) and VU6036864 (45)

Structure		O D D C C N N N N N N N N N N N N N N N N		
MILID				
VU ID	VU6035406	VU6036864		
MW	381.84	385.86		
cLogP	1.12	0.21		
TPSA (NOTACL (NOTACL)	87	87		
IC ₅₀ (nM)[ACh _{min} (%)] hM ₅ , hM ₄ , hM ₃ , hM ₂ , hM ₁	21[2], >10000[38], >10000[44], >10000[30], >10000[28]	20[2], >10000[42], >10000[42], >10000[29], >10000[27]		
IC ₅₀ (nM)[ACh _{min} (%)] rM ₅ , rM ₄ , rM ₃ , rM ₂ , rM ₁	51[2], inactive, inactive, >10000[63], 2576[7]	35[3], >10000[46], inactive, >10000[62], 2651[9]		
IC ₅₀ (nM)[ACh _{min} (%)] mM ₅	47[7]	19[9]		
Predicted CL _{hep} (mL/min/kg) h, r, m, d, c, rh	7, 33, 57, 8, 20, 13	9, 17, 57, 4, 15, 7		
$f_{u,plasma}$ (h, r, m, d, c, rh)	0.26, 0.21, 0.27, 0.43, 0.24, 0.27	0.29, 0.25, 0.33, 0.42, 0.24, 0.32		
$f_{u,brain}$ (r, m)	0.17, 0.2	0.24, n/a		
CYP IC ₅₀ (μM) 1A2, 2C9 2D6, 3A4	>30, >30 22, 17	>30,>30 16,14		
P-gp ER Papp (x 10 ⁻⁶ cm/s)	1.64 27.4	2.38 19.8		
K _p (rat)	0.72	0.68		
K _{p,uu} (rat)	0.56	0.65		
	Rat IV PK (discrete)			
Dose (mg/kg)	1.0	1.1		
Formulation	10% EtOH, 40% PEG400, 50% saline	10% EtOH, 70% PEG400, 20% saline		
t _{1/2} (term) (h)	1.0	1.1		
MRT (h)	1.3	1.1		
Cl obs (mL/min/kg)	31.8	20		
V _{ss} (L/kg)	2.37	1.3		
AUC _{inf} (hr*ng/mL)	524	949		
D (//)	Rat PO PK (discrete)	1.1		
Dose (mg/kg)	10 100/ Towar 80 in water	11 0.50/ MC 0.10/ Tayan 90 in Salina		
Formulation (ng/ml)	10% Tween 80 in water	0.5% MC, 0.1% Tween 80 in Saline		
C _{max} (ng/mL)	1910	2790		
T _{max} (hr) AUC _{inf} (hr*ng/mL)	13278	15000		
%F (PO)	> 100%	>100%		
/01 (10)	Dog PO PK (discrete)	/100/0		
Dose (mg/kg)	3.0	3.0		
Formulation	0.5% MC, 0.1% Tween 80 in saline	0.5% MC, 0.1% Tween 80 in saline		
C _{max} (ng/mL)	699	877		
T _{max} (hr)	0.58	1.0		
AUC _{inf} (hr*ng/mL)	7070	8310		
%F (PO)	58%	>100%		

from the methyl moiety to the piperidine ring (Scheme 3). With this soft spot analysis data, we tried to further improve the metabolic stability of the compound through the deuterium kinetic isotope effect. Due to the slower exchange rates of deuterium atoms, deuterated compounds were expected to have a lower metabolism rate and a longer half-life (Scheme 3). Not surprisingly, deuterium-incorporated compound 45 (VU6036864) retained very similar overall profiles compared to compound 44 including the receptor subtype selectivity trends in human and rat (Table 6). However, its metabolic stability and oral bioavailability were improved (45; human, rat, mouse, dog, cyno, and rhesus = 9, 17, 57, 4, 15, 7 mL/min/kg and %F > 100%). While mechanistic understanding leads to %F > 100% necessitate

complex experiments that are beyond the scope of this manuscript, possible reasons can be found in the literature. ^{24,25}

All three compounds showed no time-dependent inhibition of CYP3A4 at a substrate concentration of 10 μ M, and the microsomal metabolism was almost entirely dependent on CYP3A4. An apparent deuterium isotope effect was observed in the intrinsic clearance of VU6035406 (44) vs VU6036864 (45) (see SI S8).

Compounds 38, 44, and 45 were then progressed to an NHP PBL cassette study as well as the Eurofins Lead Profiling study. All three compounds showed high brain exposure in rhesus monkeys with excellent average $K_{\rm p}$ values of 1.28–1.40 (see SI S9). In addition, Eurofins Lead Profiling study results

9 - R² = 5-substituted 2,3-dihydrobenzofuran
 10 - R² = 5-substituted 2,3-dihydrobenzofuran,

Scheme 4. Synthesis of Azolopyridine-based M₅ Antagonists 9-35, 37-42, and 44

indicated that all three compounds exhibited clean ancillary pharmacology in general (see SI S10).

53a

55

Chemistry. The general synthetic route for triazolopyridine-based M_5 antagonists is outlined in Scheme 4. Most of the final compounds were synthesized in 7 linear steps starting from substituted 2-aminopyridine 46. Substituted 2-aminopyridine 46 (or 47 for the triazolopyridine regioisomer 9) was cyclized with DMF-DMA and hydroxylamine hydrochloride, followed by TFAA to form decorated triazolopyridines 48. 48

was then coupled with pinacolborane 49 via Suzuki-Miyaura coupling. Final compounds 10-35, 37-42, and 44 were then assembled by olefin reduction of 50, Boc-deprotection of 51, followed by sulfonamide formation reactions with corresponding sulfonyl chlorides 53.

$$\begin{split} R^1 &= F, X = CH, Y = CH\\ \textbf{40} - R^2 &= 5\text{-substituted } 2\text{-methylthiazole}, \\ R^1 &= Et, X = CH, Y = CH\\ \textbf{41} - R^2 &= 5\text{-substituted } 2\text{-methylthiazole}, \\ R^1 &= Et, X = CH, Y = CH\\ \textbf{42} - R^2 &= 5\text{-substituted } 2\text{-methylthiazole}, \\ R^1 &= Me, X = CH, Y = CF\\ \textbf{44} - R^2 &= 5\text{-substituted } 2\text{-methyloxazole}, \\ R^1 &= CI, X = CH, Y = CH\\ R^1 &= CI, X = CH, Y = CH\\ \end{split}$$

While 2-aminopyridine starting material **46a** was obtained by reacting halogen lacking 2-aminopyridine **54** and NBS, not readily available sulfonyl chloride **53a** was prepared from compound **55** via SO₃·DMF followed by SOCl₂ treatments.

TFA

Hunig's base, DCM

36

Scheme 5. Synthesis of 36, 43, and 45

(a) Synthesis of 36

(b) Synthesis of 43

(c) Synthesis of 45

65

Although most of the steps were straightforward and high-yielding, the most challenging step was the reduction of intermediate 50. Depending on the substituents and/or aza-decoration status of the triazolopyridine ring, different reaction patterns were observed. Slow/partial reduction, over-reduction, and dehalogenation were the most common issues. Therefore, different reduction conditions were employed to address those issues. In brief, slow reduction issues were addressed with a transfer hydrogen condition with ammonium formate. Over-reduction issues from the transfer hydrogenation reaction were addressed by switching to regular hydrogenation with H_2 . Halogen (especially Cl atom)

53d

containing intermediates were reduced using BH₃·DMS due to dehalogenation under Pd-catalyzed reduction conditions.

As shown in Scheme 5, the imidazo[1,2-*b*]pyridazine ring of compound 36 was synthesized by reacting chloroacetaldehyde with chlorinated 2-aminopyridine 56. Intermediate 57 in hand, the final compound 36 was synthesized via Suzuki-Miyaura coupling with 49, olefin reduction, and Boc-deprotection, followed by sulfonamide formation reaction with 53b.

In addition, Met-A (43) was synthesized using commercially available sulfonyl chloride 53c and intermediate 52a. Acetal deprotection under an acidic condition followed by a reduction using NaBH₄ provided Met-A (43) from intermediate 59.

Lastly, 45 (VU6036864) was prepared via a slightly modified synthetic route (Scheme 5). This updated route allowed us to keep the total number of steps at seven while avoiding the problematic reduction step. The tetradeuterated piperidine ring of 45 was formed starting from formaldehyded, DMB amine 60, and allyltrimethylsilane 61. These synthons formed DMB-protected deuterated piperidin-4-ol 62 in one step. DMB protecting group was then replaced with Boc protecting group in 2 steps. The hydroxyl group of intermediate 63 was then converted to iodide via Appel reaction. Iodinated 64 was then cross-coupled with triazolopyridine 48a via Negishi coupling. 45 (VU6036864) was then obtained after Boc-deprotection and sulfonamide formation reaction sequence with 53d.

CONCLUSIONS

In summary, a series of high-quality $M_{\rm S}$ orthosteric antagonists, including 45 (VU6036864), were discovered. This new class of high-quality tool compounds comprises a novel triazolopyridine moiety connected directly to a piperidine core. 45 (VU6036864) and its close analogues exhibited good potency, subtype selectivity, and oral DMPK properties. Taken together, our study showcases advanced $M_{\rm S}$ orthosteric antagonist tool compounds that can be used for further $M_{\rm S}$ -related studies. Follow-up studies using those tools are underway and will be reported in specialized journals. In the meantime, we hope that reported tools will provide various options for use in the field and ultimately contribute to the field of $M_{\rm S}$.

■ EXPERIMENTAL SECTION

General Chemistry. All reactions were carried out employing standard chemical techniques under an inert atmosphere. Solvents used for extraction, washing, and chromatography were HPLC grade. All reagents were purchased from commercial sources and were used without further purification. All microwave reactions were carried out in sealed tubes in a Biotage Initiator microwave synthesis reactor. Temperature control was automated via IR sensor and all indicated temperatures correspond to the maximal temperature reached during each experiment. Analytical HPLC was performed on an Agilent 1200 LCMS with UV detection at 215 and 254 nm along with ELSD detection and electrospray ionization, with all final compounds showing >95% purity and a parent mass ion consistent with the desired structure. Low resolution mass spectra were obtained on an Agilent 6120 or 6150 with ESI source. All NMR spectra were recorded on a 400 MHz Brüker AV-400 instrument. ¹H chemical shifts are reported as δ values in ppm relative to the residual solvent peak (CDCl₃ = 7.26). Data are reported as follows: chemical shift, multiplicity (br. = broad, s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constant (Hz), and integration. $^{13}\mathrm{C}$ chemical shifts are reported as δ values in ppm relative to the residual solvent peak (CDCl₃ = 77.16). High resolution mass spectra were obtained on an Agilent 6540 UHD Q-TOF with ESI source. Automated flash column chromatography was performed on a Teledyne ISCO Combiflash Rf system. For compounds that were purified on a Gilson preparative reversedphase HPLC, the system comprised of a 333 aqueous pump with solvent-selection valve, 334 organic pump, GX-271 or GX-281 liquid hander, two column switching valves, and a 155 UV detector. UV wavelength for fraction collection was user-defined, with absorbance at 254 nm always monitored. Method: Phenomenex Axia-packed Luna C18, 30 \times 50 mm, 5 μ m column. Mobile phase: CH₃CN in H₂O (0.1% TFA). Gradient conditions: 0.75 min equilibration, followed by user-defined gradient (starting organic percentage, ending organic percentage, duration), hold at 95% CH₃CN in H₂O (0.1% TFA) for 1 min, 50 mL/min, 23 °C. Melting points were recorded on an OptiMelt automated melting point system by Stanford Research

Systems. cLogP, MW, and TPSA were calculated using PerkinElmer ChemDraw professional version 20.1.0.110.

All final compounds were purified to 95% as determined by analytical LCMS (214 nm, 254 nm, and ELSD), ¹H and/or ¹³C NMR, and high-resolution MS. **53a** was prepared according to previously reported protocols using SO₃·DMF and SOCl₂. ^{20,21} Syntheses and/or characterization of selected intermediates as well as remaining final compounds are in the Supporting Information (SI).

General Procedure: Triazolopyridine Synthesis. Step 1: Substituted 2-aminopyridine (1 equiv) was added to a round-bottom flask. iPA and DMF·DMA (1.3 equiv) were then added. The resulting mixture was heated to 82 °C for 3 h, after which time the reaction was cooled to 50 °C. NH₂OH·HCl (1.3 equiv) was added in one portion, and the reaction was stirred at 50 °C for 2 h, after which time the reaction was cooled to room temperature and concentrated under reduced pressure. This hydroxy-formamidine crude mixture was directly used without further purification.

Step 2: THF (55 mL) was added to the crude mixture of hydroxy-formamidine. The resulting mixture was cooled to 0 $^{\circ}$ C. Trifluoroacetic anhydride (8 mL, 57.8 mmol, 3 equiv) was then added by syringe, and the reaction was stirred at room temperature overnight, after which time the reaction was quenched with 1 N NaOH, and then extracted with CHCl₃/iPA solution (3:1). The combined organic extracts were concentrated and dried over Na₂SO₄, and solvents were filtered and concentrated. The crude residue was then purified by column chromatography (0–100% EtOAc in hexanes).

General Procedure: Suzuki–Miyaura Cross-Coupling. Halogenated triazolo [1,5-a] pyridine (1 equiv), N-Boc-1,2,3,6-tetrahydropyridine-4-boronic acid pinacol ester (0.95 equiv), Na₂CO₃ (2 equiv), and Pd(dppf)Cl₂·DCM (0.05 equiv) were added to a microwave vial, which was sealed and placed under inert atmosphere. 1,4-dioxane and H₂O (1:1) were added via syringe, and the reaction mixture was purged with nitrogen. The resulting reaction mixture was then heated with microwave irradiation at 140 °C for 15 min, after which time the reaction mixture was filtered through Celite with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The reaction was purified by column chromatography (0–100% EtOAc in hexanes).

General Procedure: Olefin Reduction—Transfer Hydrogenation. Olefin intermediate (1 equiv), $Pd(OH)_2/C$ (0.1 equiv), and ammonium formate (18 equiv) were added followed by EtOH. The mixture was placed under an H_2 atmosphere. The mixture was then heated at 70 °C for 2 h, after which time the reaction was allowed to cool to room temperature, and the resulting mixture was filtered through Celite and thoroughly washed with MeOH. The filtrate was concentrated and then taken up in CH_2Cl_2 and $H_2O(1:1)$, and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were dried with Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography (0–40% of 10% MeOH with 1% NH_4OH in CH_2Cl_2).

General Procedure: Olefin Reduction—Hydrogenation. Olefin intermediate (1 equiv) was dissolved in MeOH and purged with N2. 10% Pd/C (0.1 equiv) was then added. The reaction mixture was stirred under H2 atmosphere (1 atm or Parr Shaker) overnight. The reaction mixture was then filtered through a pad of Celite which was rinsed thoroughly with MeOH and CH_2Cl_2 . The filtrate was concentrated and purified using column chromatography (0–60% EtOAc in hexanes).

General Procedure: Olefin Reduction—Borane Reduction. Olefin intermediate (1 equiv) was added to a round-bottomed flask, sealed with a rubber septum, and placed under an N_2 atmosphere. THF was added, and the mixture was cooled to 0 °C, and 2 M BH $_3$ · DMS in THF (6 equiv) was slowly added via a syringe. After 5 min at 0 °C, the reaction was warmed to room temperature and allowed to stir overnight. (If residual starting material remains: an additional 2 M BH $_3$ ·DMS in THF (6 equiv) was slowly added, and the reaction was stirred overnight.) The reaction was then cooled to 0 °C and quenched with 3 N NaOH (20.0 mL). The mixture was stirred at 60

 $^{\circ}$ C for 3 h, after which time the reaction was concentrated under reduced pressure to remove THF, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, and then dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by column chromatography (10–100% EtOAc in hexanes).

General Procedure: Boc Deprotection. Boc-protected intermediate (1 equiv) was dissolved in 1,4-dioxane and MeOH (5:1), and 4 M HCl in 1,4-dioxane (15 equiv) was added dropwise. The resulting mixture was stirred at room temperature for 4 h, after which time solvents were concentrated under reduced pressure. The resulting solid was used for the next step without further purification.

General Procedure: Sulfonamide Formation. Sulfonyl chloride (1 equiv) and piperidine salt (1.2 equiv) were dissolved in CH_2Cl_2 . To this reaction mixture, N_iN_i -diisopropylethylamine (3 equiv) was added and stirred at room temperature for 1 h, after which time the reaction mixture was quenched with H_2O and extracted with CH_2Cl_2 . The combined extracts were dried over Na_2SO_4 , filtered, and concentrated to dryness. The crude residue was then purified by column chromatography (0–20% MeOH in CH_2Cl_2).

5-((4-(7-Chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)-sulfonyl)-2-methylthiazole (38; VU6032423). Step 1 and 2: 5-Bromo-4-chloro-2-aminopyridine (4.00 g, 19.3 mmol, 1 equiv) was added to a round-bottom flask. iPA (64.3 mL) and DMF·DMA (3.33 mL, 25.1 mmol, 1.3 equiv) were added, and the resulting mixture was heated to 82 °C for 3 h, after which time the reaction was cooled to 50 °C. NH₂OH·HCl (1.74 g, 25.1 mmol, 1.3 equiv) was added in one portion, and the reaction was stirred at 50 °C for 2 h, after which time the reaction was cooled to room temperature and concentrated under reduced pressure and directly used without purification.

Step 3: The crude mixture was redissolved in THF (55 mL), and the resulting mixture was cooled to 0 °C. TFAA (8.04 mL, 57.8 mmol, 3 equiv) was then added, and the reaction was stirred at room temperature overnight, after which time the reaction was quenched with 1 N NaOH (55 mL), and then extracted with CHCl₃:iPA solution (3:1). The combined organic extracts were concentrated and dried over Na₂SO₄, and the solvents were filtered and concentrated. The crude residue was then purified by column chromatography (0–100% EtOAc in hexanes) to provide 6-bromo-7-chloro-[1,2,4]-triazolo[1,5-a]pyridine. (3.93 g, 87% over 2 steps). ¹H NMR (400 MHz, MeOD) δ 9.51 (s, 1 H), 8.80 (s, 1 H), 8.25 (s, 1 H); ES-MS [M + H]⁺ = 232.2.

Step 4: 6-Bromo-7-chloro-[1,2,4]triazolo[1,5-a]pyridine (3.99 g, 17.2 mmol, 1 equiv), N-Boc-1,2,3,6-tetrahydropyridine-4-boronic acid pinacol ester (4.78 g, 15.5 mmol, 0.95 equiv), Na₂CO₃ (3.71 g, 34.3 mmol, 2 equiv), and Pd(dppf)Cl₂·DCM (0.703 g, 0.86 mmol, 0.05 equiv) were added to a microwave vial, which was sealed and placed under inert atmosphere. 1,4-dioxane (6.2 mL) and H₂O (6.2 mL) were added via syringe, and the reaction mixture was purged with nitrogen. The resulting reaction mixture was then heated with microwave irradiation at 140 °C for 15 min, after which time the reaction mixture was filtered through Celite with EtOAc. The aqueous layer was extracted with EtOAc. The combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. The reaction was purified by column chromatography (0-100% EtOAc in hexanes) to provide tert-butyl 4-(7-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3,6-dihydropyridine-1(2H)-carboxylate (4.075 g, 70%). 1 H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 0.7 Hz, 1 H), 8.32 (s, 1 H), 7.80 (d, J = 0.7 Hz, 1 H), 5.83 (bs, 1 H), 4.10 (q, J = 2.9 Hz, 2H), 3.66 (t, J = 5.6 Hz, 2 H), 2.47 (bs, 2 H), 1.51 (s, 9 H); ES-MS [M + H]⁺ = 335.2.

Step 5: tert-Butyl 4-(7-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-3,6-dihydro-2H-pyridine-1-carboxylate (731 mg, 2.18 mmol, 1 equiv) was added to a round bottomed flask, sealed with a rubber septum, and placed under an N₂ atmosphere. THF (22 mL) was added, and the mixture was cooled to 0 °C, and 2 M BH₃·DMS in THF (6.55 mL, 13.1 mmol, 6 equiv) was slowly added via syringe. After 5 min at 0 °C, the reaction was warmed to room temperature and allowed to stir overnight, after which time an additional 2 M BH₃·DMS in THF (6.55 mL, 13.1 mmol, 6 equiv) was slowly added via syringe, and the

reaction was stirred overnight, after which time the reaction was cooled to 0 °C and quenched with 3 N NaOH (20 mL). The mixture was stirred at 60 °C for 3 h, after which time the reaction was concentrated under reduced pressure to remove THF, and the aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine, and then dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by column chromatography (10–100% EtOAc in hexanes) to provide *tert*-butyl 4-(7-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-piperidine-1-carboxylate (346 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 0.8 Hz, 1 H), 8.34 (s, 1 H), 7.86 (s, 1 H), 4.31 (bs, 2 H), 3.13 (tt, J = 12.1, 3.2 Hz, 1 H), 2.88 (t, J = 12.9 Hz, 2 H), 2.03–2.00 (m, 2 H), 1.58 (td, J = 12.6, 4.2 Hz, 2 H), 1.49 (s, 9H); ES-MS [M + H]⁺ = 337.3. * Residual starting material was further purified using Prep SFC. See SI for Prep SFC condition.

Step 6: *tert*-Butyl 4-(7-chloro-[1,2,4]triazolo[1,5-*a*]pyridin-6-yl)-piperidine-1-carboxylate (343 mg, 1.02 mmol, 1 equiv) was added to a vial. 4N HCl in 1,4-dioxane (8 mL, 32 mmol, 32 equiv) was added via syringe. The mixture was stirred at room temperature for 1 h, after which time the mixture was concentrated to dryness to provide 7-chloro-6-(piperidin-4-yl)-[1,2,4]triazolo[1,5-*a*]pyridine hydrochloride, which was directly used without further purification (278 mg, 99%). ES-MS $[M + H]^+ = 237.4$.

Step 7: 2-Methylthiazole-5-sulfonyl chloride (34.7 mg, 0.18 mmol, 1.2 equiv) and 7-chloro-6-(4-piperidyl)-[1,2,4]triazolo[1,5-a]pyridine; hydrochloride (40 mg, 0.15 mmol, 1 equiv) were added to a vial. CH₂Cl₂ (1 mL) and N,N-diisopropylethylamine (80 μL, 0.44 mmol, 3 equiv) were added, and the resulting mixture was stirred at 25 °C for 30 min, after which time H₂O (1 mL) was added to quench the reaction. The reaction mixture was passed through a phase separator. The combined organic layer was concentrated under reduced pressure. The crude residue was purified by column chromatography (0-10% MeOH in CH2Cl2) to provide the title compound (38; VU6032423) (47.6 mg, 81%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.33 (s, 1H), 8.04 (s, 1H), 7.82 (s, 1H), 4.03 (d, J = 11.4 Hz, 2H), 2.98 (tt, J = 12.3, 2.9 Hz, 1H), 2.81 (s, 3H), 2.59 (td, J = 12.1, 2.5 Hz, 2H), 2.15 (d, J = 13.3 Hz, 2H), 1.84 (qd, J = 13.3, 12.8, 4.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO) δ 172.6, 154.8, 148.9, 146.6, 136.2, 130.8, 128.9, 127.4, 115.7, 46.3 (2), 35.7, 30.3 (2), 19.4; ES-MS $[M + H]^+ = 398.0$; MP: 230.2-232.1 °C; HRMS (TOF, ES+): [M + H]+ calcd for C₁₅H₁₆ClN₅O₂S₂, 398.0507; found, 398.0504.

5-((4-(7-Chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)sulfonyl)-2-methyloxazole (44; VU6035406). 2-Methyloxazole-5sulfonyl chloride (700 mg, 3.85 mmol, 1.0 equiv) and 7-chloro-6-(4-piperidyl)-[1,2,4]triazolo[1,5-a]pyridine;hydrochloride (1158 mg, 4.24 mmol, 1.1 equiv) were added to a round-bottom flask. CH₂Cl₂ (30 mL) and N,N-diisopropylethylamine (2.7 mL, 15.5 mmol, 4 equiv) were added, and the resulting mixture was stirred at 25 °C overnight. After which time the reaction mixture was quenched with sat. aq. NaHCO₃ and extracted with CH₂Cl₂. The combined extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography $(0-10\% \text{ MeOH in } CH_2Cl_2)$ to provide the title compound (1238 mg, 84%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.33 (s, 1H), 7.83 (s, 1H), 7.52 (s, 1H), 4.08 (d, J = 12.2 Hz, 2H), 3.05 (tt, J = 12.1, 3.0 Hz, 1H), 2.80 (td, J = 12.4, 2.5 Hz, 2H), 2.59 (s, 3H), 2.15 (d, J = 13.1 Hz, 2H), 1.80 (qd, J = 12.6, 4.1 Hz, 2H); 13 C NMR (101 MHz, CDCl₃) δ 165.1, 155.0, 149.5, 145.0, 137.0, 133.0, 129.2, 126.1, 116.7, 46.5 (2), 36.6, 31.4 (2), 14.5; ES-MS $[M + H]^+$ = 382; Melting point: 185.1–188.8 °C. HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₆ClN₅O₃S, 382.0735; found, 382.0728.

5-((4-(7-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl-2,2,6,6-d₄)sulfonyl)-2-methyloxazole (45; VU6036864). Step 1: Formaldehyde-d₂ (20% in D₂O) (2.2 mL, 13.8 mmol, 2.3 equiv) was mixed with 2,4-dimethoxybenzylamine (0.898 mL, 5.98 mmol, 1 equiv). To this mixture, trifluoroacetic acid (0.458 mL, 5.98 mmol, 1 equiv) was added. The resulting mixture was sonicated for 10 min and then stirred at rt for 1 h. To the resulting mixture was added allyltrimethylsilane (1.05 mL, 6.58 mmol, 1.1 equiv). This reaction

mixture was stirred at 40 °C overnight. The reaction mixture was then diluted with H_2O (10 mL) and CH_2Cl_2 (10 mL). Then, K_2CO_3 (413.3 mg, 2.99 mmol) was added and stirred for 10 min at rt. After this time, the reaction mixture was extracted with CH_2Cl_2 , the layers were combined, dried over anhydrous Na_2SO_4 , filtered, and evaporated. The residue was purified by silica gel chromatography using a gradient of 0–20% MeOH in CH_2Cl_2 as eluent to yield 1-(2,4-dimethoxybenzyl)piperidin-2,2,6,6- d_4 -4-ol as an oil. ¹H NMR (400 MHz, $CDCl_3$) δ 7.21 (d, J = 8.0 Hz, 1H), 6.48–6.43 (m, 2H), 3.80 (s, 3H), 3.78 (s, 3H), 3.65 (tt, J = 9.0, 4.3 Hz, 1H), 3.50 (s, 2H), 1.85 (dd, J = 13.0, 4.3 Hz, 2H), 1.75 (br s, 1H), 1.57 (dd, J = 13.0, 9.1 Hz, 2H); ES-MS M M + M = 256.1.

Step 2: To a solution of 2,2,6,6-tetradeuterio-1-[(2,4-dimethoxyphenyl)methyl]piperidin-4-ol (3394.7 mg, 13.29 mmol, 1 equiv) in MeOH (40 mL) was added 20 wt % Pd(OH) $_2$ /C (933.5 mg, 1.33 mmol, 0.1 equiv). The reaction was charged H $_2$ and stirred at 50 psi 50 °C overnight in Parr Shaker. After which time, the reaction mixture was filtered and concentrated under reduced pressure to provide piperidin-2,2,6,6- d_4 -4-ol (1398.2 mg, quantitative).

Step 3: To a solution of piperidin-2,2,6,6- d_4 -4-ol (1398.2 mg, 13.3 mmol, 1 equiv) in 1,4-dioxane (40 mL) and CH₃CN (40 mL), Boc₂O (4.6 mL, 20 mmol, 1.5 equiv) was added and stirred at rt for 3 h. The reaction mixture was then quenched with sat. aq. NaHCO₃ (10 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL) after 1,4-dioxane and CH₃CN were removed in vacuo. Combined organic layers were dried over Na₂SO₄ and filtered. Solvents were then concentrated. Crude was purified by silica gel chromatography using a gradient of 0–20% MeOH in CH₂Cl₂ as eluent to yield *tert*-Butyl 4-hydroxypiperidine-1-carboxylate-2,2,6,6- d_4 (1658.9 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 3.83 (tt, J = 8.1, 3.9 Hz, 1H), 1.83 (dd, J = 13.2, 4.0 Hz, 2H), 1.61 (br s, 1H), 1.47–1.41 (m, 2H), 1.45 (s, 9H); ES-MS [M + H-tBu]⁺ = 150.

Step 4: To a solution of N-Boc-4-hydroxypiperdine (1474 mg, 7.2 mmol, 1 equiv) in CH₂Cl₂ (30 mL) was added PPh₃ (2449 mg, 9.3 mmol, 1.3 equiv) and imidazole (733 mg, 10.8 mmol, 1.5 equiv). The resulting slurry was then cooled to 0 °C in an ice bath and I₂ (2187 mg, 8.6 mmol, 1.2 equiv) was added in small portions. The solution was stirred for 18 h at ambient temperature. Afterward, the solution was diluted with H₂O (20 mL) and extracted with diethyl ether (3 × 50 mL). The organic layer was washed with brine and dried over Na₂SO₄. Concentration in vacuo followed by trituration with CH₂Cl₂ and hexanes/EtOAc (8/2) mixture removed the excess PPh3 and TPPO. The filtrate was concentrated in vacuo and purified by silica gel chromatography using a gradient of 0-100% EtOAc in hexanes as eluent to provide tert-butyl 4-iodopiperidine-1-carboxylate-2,2,6,6-d4 as a colorless oil (1971 mg, 87%). H NMR (400 MHz, CDCl₃) δ 4.45 (p, J = 6.0 Hz, 1H), 2.01 (d, J = 6.0 Hz, 4H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 79.9, 43.5 (m, 2), 37.3 (2), 28.6 (3), 27.9; ES-MS $[M + H-tBu]^+ = 259.9$.

Step 5: To a solution of activated Zn (1499 mg, 23 mmol, 3.6 equiv) in DMA (15 mL), was added 6-bromo-7-chloro-[1,2,4]triazolo[1,5-a]pyridine (1480 mg, 6.4 mmol, 1 equiv), tert-Butyl 4iodopiperidine-1-carboxylate-2,2,6,6-d₄ (2107 mg, 6.7 mmol,1.05 equiv), and pyridine-2-carboxamidine (154 mg, 1.27 mmol, 0.2 equiv), NiCl₂glyme (282 mg, 1.27 mmol, 0.2 equiv) and NaI (961 mg, 6.37 mmol, 1 equiv). The mixture was then stirred at rt for 4 h under N2. The reaction mixture was quenched with H2O (10 mL) and extracted with DCM (3 \times 30 mL). Organic layers were combined, dried over Na2SO4, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography using a gradient of 0-100% EtOAc in hexanes as eluent to give tert-butyl 4-(7-chloro-[1,2,4]triazolo [1,5-a] pyridin-6-yl) piperidine-1-carboxylate-2,2,6,6- d_4 (596.6 mg, 27%); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.33 (s, 1H), 7.86 (s, 1H), 3.13 (tt, J = 12.2, 3.2 Hz, 1H), 2.00 (dd, J = 13.3, 3.3 Hz, 2H), 1.55 (t, J = 12.6 Hz, 2H), 1.49 (s, 9H); ES-MS [M + H]⁺ = 341.2.

Step 6: To a solution of *tert*-Butyl 4-(7-chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidine-1-carboxylate-2,2,6,6-d₄ (1590 mg, 4.67 mmol, 1 equiv) in 1,4-dioxane (30 mL) and MeOH (10 mL) was

added 4 N HCl in 1,4-dioxane (23.3 mL, 93.3 mmol, 20 equiv) was added. The mixture was stirred at rt for 4 h, after which time the mixture was concentrated to dryness to provide 7-chloro-6-(piperidin-4-yl-2,2,6,6- d_4)-[1,2,4]triazolo[1,5-a]pyridine hydrochloride, which was directly used without further purification (quantitative). ES-MS [M + H]⁺ = 241.1.

Step 7: To a solution of 2-methyloxazole-5-sulfonyl chloride (1016.5 mg, 5.6 mmol, 1.2 equiv) in CH₂Cl₂ (50 mL), 7-chloro-6-(piperidin-4-yl-2,2,6,6- d_4)-[1,2,4]triazolo[1,5-a]pyridine hydrochloride (1293 mg, 4.66 mmol, 1 equiv) and N,N-diisopropylethylamine (4.88 mL, 28 mmol, 6 equiv) were added and stirred at rt overnight. Upon completion, the reaction mixture was quenched with sat. aq. NaHCO₃ (10 mL) and extracted with CH_2Cl_2 (3 × 50 mL). The combined extracts were dried over Na2SO4, filtered, and concentrated to dryness. The crude was then purified by flash column chromatography eluting 0-10% MeOH in CH₂Cl₂ to give 5-((4-(7- ${\it chloro-[1,2,4] triazolo[1,5-a] pyridin-6-yl) piperidin-1-yl-2,2,6,6-d_4)-1}$ sulfonyl)-2-methyloxazole (1200 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.34 (s, 1H), 7.84 (s, 1H), 7.52 (s, 1H), 3.05 (tt, J = 12.4, 3.3 Hz, 1H), 2.59 (s, 3H), 2.17-2.09 (m, 2H), 1.78 (t, J)= 12.9 Hz, 2H); 13 C NMR (101 MHz, DMSO) δ 165.2, 154.8, 148.9, 143.9, 136.2, 132.7, 129.0, 127.4, 115.7, 45.3 (m, 2), 35.5, 30.2 (2), 14.0; ES-MS $[M + H]^+ = 386$; MP: 184.3–186.8 °C, HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₂D₄ClN₅O₃S, 386.0986; found, 386.0986.

7-(1-((2,3-Dihydrobenzofuran-5-yl)sulfonyl)piperidin-4-yl)-6-methyl-[1,2,4]triazolo[1,5-a]pyridine (9). Compound 9 was synthesized according to exemplary synthetic procedure (23.8 mg). $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.25 (s, 1H), 7.65–7.55 (m, 2H), 7.53 (s, 1H), 6.89 (d, J=8.3 Hz, 1H), 4.70 (t, J=8.8 Hz, 2H), 4.01–3.93 (m, 2H), 3.30 (t, J=8.8 Hz, 2H), 2.63 (tt, J=11.3, 4.0 Hz, 1H), 2.41 (td, J=11.7, 3.2 Hz, 2H), 2.31 (d, J=1.0 Hz, 3H), 1.94–1.78 (m, 4H); $^{13}\mathrm{C}$ NMR (101 MHz, CDCl₃) δ 164.1, 153.9, 150.0, 147.6, 129.4, 128.5, 127.6, 126.8, 125.0, 122.8, 112.5, 109.7, 72.4, 46.8 (2), 37.7, 31.7 (2), 29.2, 16.5; HRMS (TOF, ES+): [M+H]+ calcd for $\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}_3\mathrm{S}$, 399.1485; found, 399.1483.

6-(1-((2,3-Dihydrobenzofuran-5-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (10). Compound 10 was synthesized according to exemplary synthetic procedure (10.1 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.34 (s, 1H), 7.68 (s, 1H), 7.62 (s, 1H), 7.59 (dd, J = 8.4, 2.1 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 4.71 (t, J = 8.9 Hz, 2H), 3.98 (d, J = 11.7 Hz, 2H), 3.30 (t, J = 8.8 Hz, 2H), 2.66 (tt, J = 12.1, 3.3 Hz, 1H), 2.45–2.37 (m, 2H), 2.43 (s, 3H) 1.97 (d, J = 13.8 Hz,, 2H), 1.83 (qd, J = 13.3, 12.7, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₂₀H₂₂N₄O₃S, 399.1485; found, 399.1480.

6-(1-((2,3-Dihydrobenzofuran-5-yl)sulfonyl)piperidin-4-yl)-5-methyl-[1,2,4]triazolo[1,5-a]pyridine (11). Compound 11 was synthesized according to exemplary synthetic procedure (12.7 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.70–7.57 (m, 3H), 7.43 (d, J = 9.3 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 4.71 (t, J = 8.8 Hz, 2H), 3.97 (dp, J = 11.4, 2.1 Hz, 2H), 3.31 (t, J = 8.8 Hz, 2H), 2.80–2.72 (m, 1H) 2.76 (s, 3H), 2.40 (td, J = 11.9, 2.7 Hz, 2H), 1.95 (qd, J = 12.9, 12.2, 4.3 Hz, 2H), 1.87–1.79 (m, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₂₀H₂₂N₄O₃S, 399.1485; found, 399.1476.

6-(1-(Chroman-6-ylsulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]-triazolo[1,5-a]pyridine (12). Compound 12 was synthesized according to exemplary synthetic procedure (12 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.23 (s, 1H), 7.52–7.45 (m, 3H), 6.92–6.86 (m, 1H), 4.29–4.22 (m, 2H), 4.00–3.90 (m, 2H), 2.84 (t, J = 6.4 Hz, 2H), 2.61 (tt, J = 12.1, 3.4 Hz, 1H), 2.44–2.34 (m, 5H), 2.09–2.00 (m, 2H), 1.98–1.91 (m, 2H), 1.86–1.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 153.9, 149.3, 140.0, 131.2, 130.0, 127.4, 126.8, 124.8, 123.0, 117.5, 116.3, 67.1, 46.9 (2), 36.1, 32.0 (2), 25.0, 21.8, 19.8; HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₂₁H₂₄N₄O₃S, 413.1642; found, 413.1636.

6-(1-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (13). Compound 13 was synthesized according to exemplary synthetic procedure (9.6 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.25 (s, 1H), 7.51 (s, 1H),

7.32 (d, J = 2.1 Hz, 1H), 7.29 (dd, J = 8.4, 2.2 Hz, 1H), 7.00 (d, J = 8.5 Hz, 1H), 4.37–4.28 (m, 4H), 3.97 (d, J = 11.7 Hz, 2H), 2.63 (tt, J = 12.1, 3.3 Hz, 1H), 2.43 (td, J = 12.0, 2.5 Hz, 2H), 2.39 (s, 3H), 1.96 (d, J = 13.0 Hz, 2H), 1.80 (qd, J = 12.6, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for $C_{20}H_{22}N_4O_4S$, 415.1435; found, 415.1432.

6-((4-(7-Methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)-sulfonyl)quinoline (14). Compound 14 was synthesized according to exemplary synthetic procedure (8.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.10 (d, J = 2.5 Hz, 1H), 8.41–8.24 (m, 5H), 8.04 (dd, J = 8.8, 2.1 Hz, 1H), 7.59 (dd, J = 8.3, 4.3 Hz, 1H), 7.51 (s, 1H), 4.11 (d, J = 11.7 Hz, 2H), 2.61 (tt, J = 12.2, 3.3 Hz, 1H), 2.49 (td, J = 11.9, 1.9 Hz, 2H), 2.35 (s, 3H), 1.99 (d, J = 12.2 Hz, 2H), 1.85 (qd, J = 13.1, 12.6, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₂₁H₂₁N₅O₂S, 408.1489; found, 408.1483.

6-(1-((1H-Benzo[d]imidazol-6-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (15). Compound 15 was synthesized according to exemplary synthetic procedure (7.3 mg). 1 H NMR (400 MHz, MeOD) δ 8.56 (s, 1H), 8.43 (s, 1H), 8.28 (s, 1H), 8.13 (d, J = 1.2 Hz, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.75 (dd, J = 8.5, 1.7 Hz, 1H), 7.51 (s, 1H), 3.99 (d, J = 11.7 Hz, 2H), 2.74 (tt, J = 12.0, 3.2 Hz, 1H), 2.46 (td, J = 12.0, 2.5 Hz, 2H), 2.40 (s, 3H), 1.98 (d, J = 12.4 Hz, 2H), 1.83 (qd, J = 12.6, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for $C_{19}H_{20}N_6O_2S$, 397.1441; found, 397.1436.

7-Methyl-6-(1-(pyridin-3-ylsulfonyl)piperidin-4-yl)-[1,2,4]-triazolo[1,5-a]pyridine (16). Compound 16 was synthesized according to exemplary synthetic procedure (5 mg). 1 H NMR (400 MHz, CDCl₃) δ 9.03 (dd, J = 2.4, 0.8 Hz, 1H), 8.86 (dd, J = 4.9, 1.6 Hz, 1H), 8.35 (s, 1H), 8.24 (s, 1H), 8.09 (ddd, J = 8.0, 2.3, 1.6 Hz, 1H), 7.55-7.49 (m, 2H), 4.05 (dt, J = 11.6, 2.3 Hz, 2H), 2.69-2.60 (m, 1H), 2.47 (td, J = 12.1, 2.4 Hz, 2H), 2.38 (d, J = 1.0 Hz, 3H), 2.03-1.95 (m, 2H), 1.87-1.78 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 154.1, 153.7, 149.5, 148.6, 139.8, 135.4, 133.1, 130.7, 124.8, 123.9, 116.5, 46.8 (2), 36.0, 32.0 (2), 19.8; HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₇H₁₉N₅O₂S, 358.1332; found, 358.1327.

7-Methyl-6-(1-((6-methylpyridin-3-yl)sulfonyl)piperidin-4-yl)-[*1,2,4*]*triazolo*[*1,5-a*]*pyridine* (*17*). Compound 17 was synthesized according to exemplary synthetic procedure (9.5 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 2.4, 0.8 Hz, 1H), 8.34 (s, 1H), 8.25 (s, 1H), 7.96 (dd, J = 8.1, 2.4 Hz, 1H), 7.50 (s, 1H), 7.35 (d, J = 8.1 Hz, 1H), 4.07–3.98 (m, 2H), 2.67 (s, 3H), 2.62 (dt, J = 12.1, 3.3 Hz, 1H), 2.45 (td, J = 12.0, 2.4 Hz, 2H), 2.38 (d, J = 1.0 Hz, 3H), 2.02–1.93 (m, 2H), 1.87–1.75 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 163.7, 154.1, 149.4, 148.1, 139.8, 135.7, 130.8, 130.1, 124.8, 123.5, 116.4, 46.8 (2), 36.0, 32.0 (2), 24.9, 19.8; HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₈H₂₁N₅O₂S, 372.1489; found, 372.1482.

6-(1-((3,4-Difluorophenyl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (18). Compound 18 was synthesized according to exemplary synthetic procedure (10.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.25 (s, 1H), 7.64 (ddd, J = 9.3, 7.2, 2.2 Hz, 1H), 7.58 (dddd, J = 8.6, 3.9, 2.2, 1.4 Hz, 1H), 7.51 (s, 1H), 7.37 (ddd, J = 9.6, 8.6, 7.3 Hz, 1H), 4.04–3.95 (m, 2H), 2.64 (tt, J = 12.1, 3.3 Hz, 1H), 2.44 (td, J = 12.0, 2.4 Hz, 2H), 2.39 (d, J = 0.9 Hz, 3H), 2.03–1.95 (m, 2H), 1.88–1.76 (m, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₈H₁₈F₂N₄O₂S, 393.1191; found, 393.1185.

6-(1-((1,3-Dimethyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (19). Compound 19 was synthesized according to exemplary synthetic procedure (47.9 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.25 (s, 1H), 7.71 (s, 1H), 7.52 (s, 1H), 3.96 (d, J = 11.5 Hz, 2H), 3.89 (s, 3H), 2.68 (tt, J = 12.1, 3.3 Hz, 1H), 2.50 (td, J = 12.0, 2.5 Hz, 2H), 2.44 (s, 3H), 2.42 (s, 3H), 2.00 (d, J = 14.1 Hz, 2H), 1.83 (qd, J = 13.4, 12.7, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₇H₂₂N₆O₂S, 375.1598; found, 375.1593.

7-Methyl-6-(1-((1,3,5-trimethyl-1H-pyrazol-4-yl)sulfonyl)-piperidin-4-yl)-[1,2,4]triazolo[1,5-a]pyridine (20). Compound 20 was synthesized according to exemplary synthetic procedure (11.8 mg). $^{\rm I}$ H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.27 (s, 1H), 7.54 (s, 1H), 3.94 (d, J = 11.5 Hz, 2H), 3.78 (s, 3H), 2.70 (tt, J = 12.1, 3.3 Hz, 1H), 2.55 (td, J = 12.0, 2.5 Hz, 2H), 2.49 (s, 3H), 2.43 (s, 3H),

2.41 (s, 3H), 2.02–1.95 (m, 2H), 1.80 (qd, J = 12.8, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for $C_{18}H_{24}N_6O_2S$, 389.1754; found, 389.1751.

6-(1-((1,5-Dimethyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (21). Compound 21 was synthesized according to exemplary synthetic procedure (15.7 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.26 (s, 1H), 7.69 (s, 1H), 7.53 (s, 1H), 3.95 (d, J = 11.4 Hz, 2H), 3.86 (s, 3H), 2.66 (tt, J = 12.0, 3.3 Hz, 1H), 2.52 (s, 3H), 2.49–2.40 (m, 5H), 1.99 (d, J = 14.1 Hz, 2H), 1.83 (qd, J = 12.7, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₇H₂₂N₆O₂S, 375.1598; found, 375.1591.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (22). Compound 22 was synthesized according to exemplary synthetic procedure (11.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.26 (s, 1H), 7.80 (s, 1H), 7.52 (s, 1H), 4.03 (d, J = 11.8 Hz, 2H), 3.93 (s, 3H), 2.70 (tt, J = 12.2, 3.3 Hz, 1H), 2.58 (td, J = 12.1, 11.4, 1.8 Hz, 2H), 2.42 (s, 3H), 2.00 (d, J = 13.4 Hz, 2H), 1.82 (qd, J = 12.6, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₉ClN₆O₂S, 395.1051; found, 395.1043.

6-(1-((5,6-Dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)sulfonyl)-piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (23). Compound 23 was synthesized according to exemplary synthetic procedure (18 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.25 (s, 1H), 7.74 (s, 1H), 7.52 (s, 1H), 4.24 (t, J = 7.4 Hz, 2H), 3.96 (d, J = 11.4 Hz, 2H), 3.12 (t, J = 7.5 Hz, 2H), 2.75–2.61 (m, 3H), 2.49–2.39 (m, 5H), 2.00 (d, J = 11.6 Hz, 2H), 1.85 (qd, J = 13.3, 12.7, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₈H₂₂N₆O₂S, 387.1598; found, 387.1594.

6-(1-(1,2-Dimethyl-1H-imidazol-5-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (**24**). Compound **24** was synthesized according to exemplary synthetic procedure (20.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.25 (s, 1H), 7.53 (s, 1H), 7.51 (s, 1H), 3.97 (d, J = 12.0 Hz, 2H), 3.74 (s, 3H), 2.80–2.69 (m, 3H), 2.46 (s, 3H), 2.44 (s, 3H), 2.01 (d, J = 12.7 Hz, 2H), 1.77 (qd, J = 13.4, 12.8, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₇H₂₂N₆O₂S, 375.1598; found, 375.1596.

2,4-Dimethyl-5-((4-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-piperidin-1-yl)sulfonyl)thiazole (**25**). Compound **25** was synthesized according to exemplary synthetic procedure (45.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.27 (s, 1H), 7.55 (s, 1H), 4.03 (d, J = 11.6 Hz, 2H), 2.77–2.60 (m, 9H), 2.43 (s, 3H), 2.02 (d, J = 13.1 Hz, 2H), 1.84 (qd, J = 12.8, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₇H₂₁N₅O₂S₂, 392.1209; found, 392.1202.

2-Methyl-5-((4-(7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-piperidin-1-yl)sulfonyl)thiazole (**26**). Compound **26** was synthesized according to exemplary synthetic procedure (12.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.27 (s, 1H), 8.03 (s, 1H), 7.55 (s, 1H), 4.02 (d, J = 11.6 Hz, 2H), 2.80 (s, 3H), 2.69 (tt, J = 12.2, 3.2 Hz, 1H), 2.56 (td, J = 12.0, 2.6 Hz, 2H), 2.42 (d, J = 1.0 Hz, 3H), 2.03 (d, J = 13.0 Hz, 2H), 1.86 (qd, J = 12.6, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₉N₅O₂S₂, 378.1053; found, 378.1045.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-[1,2,4]triazolo[1,5-a]pyridine (27). Compound 27 was synthesized according to exemplary synthetic procedure (12.8 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.34 (s, 1H), 7.79 (s, 1H), 7.77 (d, J = 9.2 Hz, 1H), 7.42 (dd, J = 9.2, 1.8 Hz, 1H), 4.02 (d, J = 11.8 Hz, 2H), 3.92 (s, 3H), 2.69–2.53 (m, 3H), 2.02 (d, J = 12.0 Hz, 2H), 1.88 (qd, J = 13.4, 12.8, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₇ClN₅O₇S, 381.0895; found, 381.0891.

7-Chloro-6-(1-((5-chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)-piperidin-4-yl)-[1,2,4]triazolo[1,5-a]pyridine (28). Compound 28 was synthesized according to exemplary synthetic procedure (7.1 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 8.35 (s, 1H), 7.87 (s, 1H), 7.80 (s, 1H), 4.05 (d, J = 11.8 Hz, 2H), 3.93 (s, 3H), 2.99 (tt, J = 12.3, 3.3 Hz, 1H), 2.61 (td, J = 12.2, 2.5 Hz, 2H), 2.13 (d, J = 12.7 Hz, 2H), 1.81 (qd, J = 12.5, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁_SH₁₆Cl₂N₆O₂S, 415.0505; found, 415.0501.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-fluoro-[1,2,4]triazolo[1,5-a]pyridine (29). Compound 29 was

synthesized according to exemplary synthetic procedure (14.5 mg). $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.40 (d, J=6.5 Hz, 1H), 8.30 (s, 1H), 7.80 (s, 1H), 7.39 (d, J=9.9 Hz, 1H), 4.07–3.99 (m, 2H), 3.93 (s, 3H), 2.86 (tt, J=12.3, 3.4 Hz, 1H), 2.60 (td, J=12.2, 2.4 Hz, 2H), 2.08 (d, J=13.0 Hz, 2H), 1.87 (qd, J=12.6, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₆ClFN₆O₂S, 399.0801; found, 399.0794

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridine (**30**). Compound **30** was synthesized according to exemplary synthetic procedure (5.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.46 (s, 1H), 8.12 (s, 1H), 7.80 (s, 1H), 4.04 (d, J = 11.5 Hz, 2H), 3.95 (s, 3H), 2.92 (t, J = 12.2 Hz, 1H), 2.55 (td, J = 12.2, 2.3 Hz, 2H), 2.07 (d, J = 13.0 Hz, 2H), 1.89 (qd, J = 12.6, 3.9 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₆ClF₃N₆O₂S, 449.0769; found, 449.0763.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-ethyl-[1,2,4]triazolo[1,5-a]pyridine (31). Compound 31 was synthesized according to exemplary synthetic procedure (7.9 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.33 (s, 1H), 7.81 (s, 1H), 7.65 (s, 1H), 4.04 (d, J=11.8 Hz, 2H), 3.94 (s, 3H), 2.75 (q, J=7.3 Hz, 3H), 2.58 (td, J=12.0, 2.5 Hz, 2H), 2.00 (d, J=14.1 Hz, 2H), 1.86 (qd, J=13.4, 12.7, 4.0 Hz, 2H), 1.31 (t, J=7.4 Hz, 3H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for $C_{17}H_{21}ClN_6O_2S$, 409.1208; found, 409.1202.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-cyclopropyl-[1,2,4]triazolo[1,5-a]pyridine (32). Compound 32 was synthesized according to exemplary synthetic procedure (10.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.27 (s, 1H), 7.81 (s, 1H), 7.34 (s, 1H), 4.05 (d, J = 11.8 Hz, 2H), 3.93 (s, 3H), 3.09 (tt, J = 12.2, 3.4 Hz, 1H), 2.59 (td, J = 12.2, 2.5 Hz, 2H), 2.08 (d, J = 14.0 Hz, 2H), 1.96–1.78 (m, 3H), 1.11–1.04 (m, 2H), 0.83–0.76 (m, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₈H₂₁ClN₆O₂S, 421.1208; found, 421.1205.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methoxy-[1,2,4]triazolo[1,5-a]pyridine (33). Compound 33 was synthesized according to exemplary synthetic procedure (7.5 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.18 (s, 1H), 7.80 (s, 1H), 6.98 (s, 1H), 4.00 (dp, J = 11.7, 1.9 Hz, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 2.87 (tt, J = 12.3, 3.3 Hz, 1H), 2.58 (td, J = 12.1, 2.4 Hz, 2H), 2.03 (dt, J = 12.6, 2.5 Hz, 2H), 1.87–1.73 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 159.5, 154.2, 151.0, 140.4, 129.0, 125.3, 124.5, 115.3, 94.1, 56.2, 46.7 (2), 37.3, 33.9, 31.0 (2); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₉ClN₆O₃S, 411.1001; found, 411.1002.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methyl-[1,2,4]triazolo[1,5-b]pyridazine (**34**). Compound 34 was synthesized according to exemplary synthetic procedure (11.2 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.91 (d, J = 1.1 Hz, 1H), 7.81 (s, 1H), 4.02 (d, J = 12.2 Hz, 2H), 3.94 (s, 3H), 2.94 (tt, J = 11.2, 3.5 Hz, 1H), 2.67 (td, J = 12.1, 2.7 Hz, 2H), 2.49 (d, J = 1.1 Hz, 3H), 2.24–2.10 (m, 2H), 2.01 (d, J = 12.6 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₈ClN₇O₂S, 396.1004; found, 396.0997

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine (35). Compound 35 was synthesized according to exemplary synthetic procedure (3.3 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.41 (s, 1H), 7.81 (s, 1H), 4.06 (d, J = 11.8 Hz, 2H), 3.93 (s, 3H), 2.77 (tt, J = 12.0, 3.2 Hz, 1H), 2.69 (s, 3H), 2.60 (td, J = 12.2, 2.5 Hz, 2H), 2.05 (d, J = 13.5 Hz, 2H), 1.83 (qd, J = 12.7, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₅H₁₈ClN₇O₂S, 396.1004; found, 396.0997.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-7-methylimidazo[1,2-b]pyridazine (**36**). Compound **36** was synthesized according to exemplary synthetic procedure (6.9 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (t, J = 1.0 Hz, 1H), 7.81 (s, 1H), 7.65 (d, J = 1.3 Hz, 1H), 7.64 (t, J = 1.0 Hz, 2H), 4.04–3.94 (m, 2H), 3.93 (s, 3H), 2.84 (tt, J = 11.4, 3.6 Hz, 1H), 2.60 (td, J = 12.0, 2.7 Hz, 2H), 2.36 (d, J = 1.1 Hz, 1H), 2.17–2.02 (m, 2H), 2.02–1.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 140.4, 138.8, 133.4, 129.0, 126.4, 125.0, 116.1, 115.4, 46.4 (2), 38.3, 37.3, 30.2 (2), 18.8;

HRMS (TOF, ES⁺): $[M + H]^+$ calcd for $C_{16}H_{19}ClN_6O_2S$, 395.1051; found, 395.1052.

6-(1-((5-Chloro-1-methyl-1H-pyrazol-4-yl)sulfonyl)piperidin-4-yl)-8-fluoro-7-methyl-[1,2,4]triazolo[1,5-a]pyridine (37). Compound 37 was synthesized according to exemplary synthetic procedure (25.5 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.25 (s, 1H), 7.80 (s, 1H), 4.04 (d, J=11.7 Hz, 2H), 3.93 (s, 3H), 2.71 (tt, J=12.1, 3.3 Hz, 1H), 2.59 (td, J=12.1, 2.5 Hz, 2H), 2.35 (d, J=2.9 Hz, 3H), 2.01 (d, J=13.6 Hz, 2H), 1.83 (qd, J=13.4, 12.8, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₈CIFN₆O₂S, 413.0957; found, 413.0951.

5-((4-(7-Fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)-sulfonyl)-2-methylthiazole (39). Compound 39 was synthesized according to exemplary synthetic procedure (7.2 mg). 1 H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 6.6 Hz, 1H), 8.30 (s, 1H), 8.03 (s, 1H), 7.39 (d, J = 9.9 Hz, 1H), 4.01 (d, J = 11.6 Hz, 2H), 2.85 (ddd, J = 16.0, 12.6, 3.6 Hz, 1H), 2.80 (s, 3H), 2.58 (td, J = 12.2, 2.6 Hz, 2H), 2.09 (d, J = 14.1 Hz, 2H), 1.90 (qd, J = 12.6, 4.1 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for $C_{15}H_{16}FN_5O_2S_2$, 382.0802; found, 382.0795.

5-((4-(7-Ethyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)-sulfonyl)-2-methylthiazole (40). Compound 40 was synthesized according to exemplary synthetic procedure (6.8 mg). $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 8.27 (s, 1H), 8.04 (s, 1H), 7.58–7.54 (m, 1H), 4.02 (ddt, J=11.9, 4.2, 1.9 Hz, 2H), 2.81 (s, 3H), 2.77–2.67 (m, 3H), 2.56 (td, J=12.1, 2.6 Hz, 2H), 2.02 (ddd, J=12.6, 4.0, 1.9 Hz, 2H), 1.88 (qd, J=12.5, 3.9 Hz, 2H), 1.30 (t, J=7.4 Hz, 3H); HRMS (TOF, ES+): [M + H]+ calcd for $\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{N}_5\mathrm{O}_2\mathrm{S}_2$, 392.1209; found, 392.1205.

2-Methyl-5-((4-(7-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)sulfonyl)thiazole (41). Compound 41 was synthesized according to exemplary synthetic procedure (4.8 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.46 (s, 1H), 8.13 (s, 1H), 8.04 (s, 1H), 4.02 (d, J = 11.8 Hz, 2H), 2.96–2.86 (m, 1H), 2.82 (s, 3H), 2.54 (td, J = 12.1, 2.6 Hz, 2H), 2.09 (d, J = 13.2 Hz, 2H), 1.92 (qd, J = 12.5, 3.7 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₆F₃N₅O₂S₂, 432.0770; found, 432.0766.

5-((4-(8-Fluoro-7-methyl-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-piperidin-1-yl)sulfonyl)-2-methylthiazole (42). Compound 42 was synthesized according to exemplary synthetic procedure (15.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.25 (s, 1H), 8.04 (s, 1H), 4.03 (d, J = 11.7 Hz, 2H), 2.81 (s, 3H), 2.70 (tt, J = 12.2, 3.2 Hz, 1H), 2.57 (td, J = 12.0, 2.5 Hz, 2H), 2.35 (d, J = 2.9 Hz, 3H), 2.04 (d, J = 13.8 Hz, 2H), 1.86 (qd, J = 13.1, 12.6, 4.0 Hz, 2H); HRMS (TOF, ES⁺): [M + H]⁺ calcd for C₁₆H₁₈FN₅O₂S₂, 396.0959; found, 396.0956

(5-((4-(7-Chloro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)piperidin-1-yl)-sulfonyl)thiazol-2-yl)methanol (43). Compound 43 was synthesized according to Scheme 5 (3.6 mg). $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.33 (s, 1H), 8.14 (s, 1H), 7.82 (s, 1H), 5.05 (d, J=5.9 Hz, 2H), 4.05 (d, J=11.5 Hz, 2H), 2.99 (tt, J=12.2, 3.1 Hz, 1H), 2.72 (t, J=5.9 Hz, 1H), 2.62 (td, J=12.0, 2.4 Hz, 2H), 2.14 (d, J=12.9 Hz, 2H), 1.83 (qd, J=12.6, 4.1 Hz, 2H); HRMS (TOF, ES†): $[\mathrm{M}+\mathrm{H}]^+$ calcd for $\mathrm{C_{15}H_{16}ClN_5O_3S_2}$, 414.0456; found, 414.0451.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01193.

General chemistry, experimental information, and syntheses of all other compounds; in vitro and in vivo pharmacology and DMPK methods (PDF)

Molecular formula strings (CSV)

AUTHOR INFORMATION

Corresponding Authors

Craig W. Lindsley – Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232,

- United States; orcid.org/0000-0003-0168-1445; Phone: 615-322-8700; Email: craig.lindsley@vanderbilt.edu; Fax: 615-343-3088
- Changho Han Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; oorcid.org/0000-0002-0832-7070; Email: changho.han@vanderbilt.edu

Authors

- Jinming Li Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Douglas L. Orsi Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States; orcid.org/0000-0001-6731-5494
- Julie L. Engers Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Madeline F. Long Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States; orcid.org/0000-0002-8933-3439
- Rory A. Capstick Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Mallory A. Maurer Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Christopher C. Presley Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Paige N. Vinson Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Alice L. Rodriguez Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States; orcid.org/0000-0002-5244-5103
- Allie Han Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Hyekyung P. Cho Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Sichen Chang Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- **Megan Jackson** Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232,

- United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Michael Bubser Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Anna L. Blobaum Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Olivier Boutaud Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Michael A. Nader Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Medical Center Boulevard Winston-Salem, Winston-Salem, North Carolina 27157, United States
- Colleen M. Niswender Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- P. Jeffrey Conn Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Carrie K. Jones Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jmedchem.4c01193

Author Contributions

J.L. and D.L.O. contributed equally to this work J.L., D.L.O., J.L.E., R.A.C., M.F.L., M.A.M., P.N.V., A.L.R., A.H., H.P.C., S.C., M.J., M.B. performed the experiments. J.L.E., P.N.V., A.L.R., H.P.C., M.J., A.L.B., O.B., C.M.N., P.J.C., C.K.J., C.W.L., C.H. analyzed the data. C.C.P. managed SFC purification. P.N.V., H.P.C., A.L.B., O.B., M.A.N., C.M.N., P.J.C., C.K.J., C.W.L., C.H. designed the experiments. C.H. and C.W.L. wrote the manuscript with the input of all authors

The authors declare the following competing financial interest(s): Some authors are inventors in the application for the composition of matter patents that protect several series of M5 antagonists.

ACKNOWLEDGMENTS

We thank the following funding agent for their generous support of this work: Ancora Innovation, LLC (to C.W.L and C.K.J.). We thank the William K. Warren Family and Foundation for funding the William K. Warren, Jr., Chair in Medicine and supporting our program. We also thank Madeline Ragland for assistance with binding experiments.

ABBREVIATIONS

BH₃·DMS, Borane dimethyl sulfide complex; CSF, cerebrospinal fluid; CYP, cytochrome P450; DCM, dichloromethane; DMB, dimethoxybenzyl; DMPK, drug metabolism pharmacokinetics; DMF·DMA, *N*,*N*-dimethylformamide dimethyl ace-

tal; $f_{\rm uv}$ fraction unbound; hERG, human ether-a-go-go-related gene; iPA, isopropanol; MP, melting point; MW, molecular weight; MW, microwave; NH₂OH·HCl, hydroxylamine hydrochloride; P-gp ER, p-glycoprotein efflux ratio; SAR, structure—activity relationship; SI, supporting Information; TFAA, trifluoroacetic anhydride; TPPO, triphenylphosphine oxide; TPSA, total polar surface area

REFERENCES

- (1) Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin Neurobiol. 2006, 16 (6), 710-715.
- (2) Brown, D. A. Acetylcholine and cholinergic receptors. *Brain Neurosci Adv.* **2019**, 3, No. 2398212818820506.
- (3) Moran, S. P.; Maksymetz, J.; Conn, P. J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. *Trends Pharmacol. Sci.* **2019**, 40 (12), 1006–1020.
- (4) Calaf, G. M.; Crispin, L. A.; Muñoz, J. P.; Aguayo, F.; Bleak, T. C. Muscarinic receptors associated with cancer. *Cancers* **2022**, *14* (9), 2322.
- (5) Chen, J.; Cheuk, I. W. Y.; Shin, V. Y.; Kwong, A. Acetylcholine receptors: key players in cancer development. *Surg. Oncol.* **2019**, *31*, 46–53.
- (6) Weiner, D. M.; Levey, A. I.; Brann, M. R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. *Proc. Natl. Acad. Sci. U.S.A.* **1990**, *87* (18), 7050–7054.
- (7) Gould, R. W.; Gunter, B. W.; Bubser, M.; Matthews, R. T.; Teal, L. B.; Ragland, M. G.; Bridges, T. M.; Garrison, A. T.; Winder, D. G.; Lindsley, C. W.; Jones, C. K. Acute negative allosteric modulation of M₅ muscarinic acetylcholine receptors inhibits oxycodone self-administration and cue-induced reactivity with no effect on antinociception. *ACS Chem. Neurosci.* **2019**, *10* (8), 3740–3750.
- (8) Bender, A. M.; Garrison, A. T.; Lindsley, C. W. The muscarinic acetylcholine receptor M₅: therapeutic implications and allosteric modulation. *ACS Chem. Neurosci.* **2019**, *10* (3), 1025–1034.
- (9) Vuckovic, Z.; Gentry, P. R.; Berizzi, A. E.; Hirata, K.; Varghese, S.; Thompson, G.; van der Westhuizen, E. T.; Burger, W. A. C.; Rahmani, R.; Valant, C.; Langmead, C. J.; Lindsley, C. W.; Baell, J. B.; Tobin, A. B.; Sexton, P. M.; Christopoulos, A.; Thal, D. M. Crystal structure of the M₅ muscarinic acetylcholine receptor. *Proc. Natl. Acad. Sci. U.S.A.* **2019**, *116* (51), 26001–26007.
- (10) Burger, W. A. C.; Gentry, P. R.; Berizzi, A. E.; Vuckovic, Z.; van der Westhuizen, E. T.; Thompson, G.; Yeasmin, M.; Lindsley, C. W.; Sexton, P. M.; Langmead, C. J.; Tobin, A. B.; Christopoulos, A.; Valant, C.; Thal, D. M. Identification of a novel allosteric site at the M₅ muscarinic acetylcholine receptor. *ACS Chem. Neurosci.* **2021**, *12* (4), 3112–3123.
- (11) Garrison, A. T.; Orsi, D. L.; Capstick, R. A.; Whomble, D.; Li, J.; Carter, T. R.; Felts, A. S.; Vinson, P. N.; Rodriguez, A. L.; Han, A.; Hajari, K.; Cho, H. P.; Teal, L. B.; Ragland, M. G.; Ghamari-Langroudi, M.; Bubser, M.; Chang, S.; Schnetz-Boutaud, N. C.; Boutaud, O.; Blobaum, A. L.; Foster, D. J.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W.; Jones, C. K.; Han, C. Development of VU6019650: a potent, highly selective, and systemically active orthosteric antagonist of the $M_{\rm S}$ muscarinic acetylcholine receptor for the treatment of opioid use disorder. *J. Med. Chem.* **2022**, *65* (8), 6273–6286.
- (12) Nunes, E. J.; Kebede, N.; Haight, J. L.; Foster, D. J.; Lindsley, C. W.; Conn, P. J.; Addy, N. A. Ventral tegmental area $M_{\rm S}$ muscarinic receptors mediate effort-choice responding and nucleus accumbens dopamine in a sex-specific manner. *J. Pharmacol. Exp. Ther.* **2023**, 385 (2), 146–156.
- (13) Nunes, E. J.; Rupprecht, L. E.; Foster, D. J.; Lindsley, C. W.; Conn, P. J.; Addy, N. A. Examining the role of muscarinic M_5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. *Neuropharmacology* **2020**, 171, No. 108089.
- (14) Razidlo, J. A.; Fausner, S. M. L.; Ingebretson, A. E.; Wang, L. C.; Petersen, C. L.; Mirza, S.; Swank, I. N.; Alvarez, V. A.; Lemos, J. C.

- Chronic loss of muscarinic M_5 receptor function manifests disparate impairments in exploratory behavior in male and female mice despite common dopamine regulation. *J. Neurosci.* **2022**, 42 (36), 6917–6930.
- (15) Teal, L. B.; Bubser, M.; Duncan, E.; Gould, R. W.; Lindsley, C. W.; Jones, C. K. Selective M₅ muscarinic acetylcholine receptor negative allosteric modulator VU6008667 blocks acquisition of opioid self-administration. *Neuropharmacology* **2023**, 227, No. 109424.
- (16) Eglen, R. M.; Nahorski, S. R. The muscarinic M(5) receptor: a silent or emerging subtype? Br. J. Pharmacol. 2000, 130 (1), 13–21. (17) Zell, V.; Teuns, G.; Needham, A. S.; Mukherjee, S.; Roscoe, N.; Le, M.; Fourgeaud, L.; Woodruff, G.; Bhattacharya, A.; Marella, M.; Bonaventure, P.; Drevets, W. C.; Balana, B. Characterization of selective M_5 acetylcholine muscarinic receptor modulators on dopamine signaling in the striatum. J. Pharmacol. Exp. Ther. 2023, 387 (2), 226–234. Scopus.
- (18) Gentry, P. R.; Kokubo, M.; Bridges, T. M.; Cho, H. P.; Smith, E.; Chase, P.; Hodder, P. S.; Utley, T. J.; Rajapakse, A.; Byers, F.; Niswender, C. M.; Morrison, R. D.; Daniels, J. S.; Wood, M. R.; Conn, P. J.; Lindsley, C. W. Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M₅-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. *ChemMedChem* **2014**, *9* (8), 1677–1682.
- (19) Zheng, G.; Smith, A. M.; Huang, X.; Subramanian, K. L.; Siripurapu, K. B.; Deaciuc, A.; Zhan, C. G.; Dwoskin, L. P. Structural modifications to tetrahydropyridine-3-carboxylate esters en route to the discovery of M_s -preferring muscarinic receptor orthosteric antagonists. *J. Med. Chem.* **2013**, *56* (4), 1693–1703.
- (20) Capstick, R. A.; Whomble, D.; Orsi, D. L.; Felts, A. S.; Rodriguez, A. L.; Vinson, P. N.; Chang, S.; Blobaum, A. L.; Niswender, C. M.; Conn, P. J.; Jones, C. K.; Lindsley, C. W.; Han, C. Discovery of a potent M_5 antagonist with improved clearance profile. Part 1: Piperidine amide-based antagonists. *Bioorg. Med. Chem. Lett.* **2022**, *76*, No. 128988.
- (21) Orsi, D. L.; Felts, A. S.; Rodriguez, A. L.; Vinson, P. N.; Cho, H. P.; Chang, S.; Blobaum, A. L.; Niswender, C. M.; Conn, P. J.; Jones, C. K.; Lindsley, C. W.; Han, C. Discovery of a potent M_5 antagonist with improved clearance profile. Part 2: Pyrrolidine amidebased antagonists. *Bioorg. Med. Chem. Lett.* **2022**, 78, No. 129021.
- (22) Hitchcock, S. A. Structural modifications that alter the P-glycoprotein efflux properties of compounds. *J. Med. Chem.* **2012**, *55* (11), 4877–4895.
- (23) Creanza, T. M.; Delre, P.; Ancona, N.; Lentini, G.; Saviano, M.; Mangiatordi, G. F. Structure-based prediction of hERG-related cardiotoxicity: a benchmark study. *J. Chem. Inf. Model.* **2021**, *61* (9), 4758–4770.
- (24) Ward, K. W.; Azzarano, L. M.; Evans, C. A.; Smith, R. R. Apparent absolute oral bioavailability in excess of 100% for a vitronectin receptor antagonist (SB-265123) in rat. I. Investigation of potential experimental and mechanistic explanations. *Xenobiotica* **2004**, *34* (4), 353–366.
- (25) Ward, K. W.; Hardy, L. B.; Kehler, J. R.; Azzarano, L. M.; Smith, B. R. Apparent absolute oral bioavailability in excess of 100% for a vitronectin receptor antagonist (SB-265123) in rat. II. Studies implicating transporter-mediated intestinal secretion. *Xenobiotica* **2004**, *34* (4), 367–377.